Skip to main content
Log in

Opto-structural properties of Si-rich SiNx with different stoichiometry

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study deals with the fabrication and characterization of silicon nanoparticles in a SiNx dielectric matrix to have thin films of different gap energies, films essentially based on silicon. Hydrogenated silicon-rich nitride films SiNx:H with different stoichiometry X = N/Si were grown on Si substrate using industrial low-frequency plasma-enhanced chemical vapor deposition (LF-PECVD). Optical, electrical, and structural properties of the obtained films have been studied after rapid thermal annealing at 950 °C. The GIXRD and Raman analysis demonstrate that the films contain simultaneously the hexagonal β-Si3N4 phase and crystalline silicon nanoparticles and the average size of silicon nanocrystallites is within the range of 2.5–11 nm according to the stoichiometry. A strong visible photoluminescence (PL) can be observed in silicon nitride and the evolution of PL with the NH3/SiH4 ratio is correlated with the evolution of the structure. The layers having a luminescence in the visible region present a photocurrent (PC) in the high-energy region. PC spectroscopy has clearly demonstrated the existence of increased absorption on the high-energy side associated with Si-Ncs and confirms the potential of Si-Ncs for photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Trupke, M.A. Green, P. Würfel, Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92, 1668–1674 (2002)

    ADS  Google Scholar 

  2. K. Yano, T. Ishii, T. Hashimoto et al., Room-temperature single-electron memory. IEEE T-ED 41, 1628–1638 (1994)

    Google Scholar 

  3. W. Liao, X. Zeng, W. Yao, X. Wen, Photoluminescence and carrier transport mechanisms of silicon-rich silicon nitride light emitting device. Appl. Surf. Sci. 351, 1053–1059 (2015)

    Google Scholar 

  4. P.L. Li, C. Gau, C.W. Liu, Correlation between photo response and nanostructures of silicon quantum dots in annealed Si-rich nitride films. Thin. Solid Films 529, 185–189 (2013)

    ADS  Google Scholar 

  5. S. Hong, I.B. Baek, G.Y. Kwak, S.H. Lee, J.S. Jang, K.J. Kim, A. Kim, Improved electrical properties of silicon quantum dot layers for photovoltaic applications. Sol. Energy. Mater. Sol. Cells. 150, 71–75 (2016)

    Google Scholar 

  6. D. Das, D. Kar, Structural studies of n-type nc-Si–QD thin films for nc-Si solar cells. J. Phys. Chem. Solids. 111, 115–122 (2017)

    ADS  Google Scholar 

  7. G.R. Lin, Y.H. Pai, C.T. Lin, C.C. Chen, Comparison on the electroluminescence of Si-rich SiNx and SiOx based light emitting Diodes. Appl. Phys. Lett. 96, 263514 (2010)

    ADS  Google Scholar 

  8. C.D. Lin, C.H. Cheng, Y.H. Lin, C.L. Wu, Y.H. Pai, G.R. Lin, Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films. Appl. Phys. Lett. 99, 243501 (2011)

    ADS  Google Scholar 

  9. D. Li, J. Huang, D. Yang, Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment. Phys. E 41, 920–922 (2009)

    Google Scholar 

  10. G.R. Lin, S.P. Su, C.L. Wu, Y.H. Lin, B.J. Huang, H.Y. Wang, C.T. Tsai, C.I. Wu, Y.C. Chi, Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s. Sci. Rep. UK 5, 9611 (2015)

    Google Scholar 

  11. S. Mohammed, M.T. Nimmo, A.V. Malko, C.L. Hinkle, Chemical bonding and defect states of LPCVD grown silicon-rich Si3N4 for quantum dot applications. J. Vac. Sci. Technol. A 32(2), 021507 (2014)

    Google Scholar 

  12. I. Parkhomenkoa, L. Vlasukovaa, F. Komarovb, O. Milchaninb, M. Makhavikoub, A. Mudryic, V. Zhivulkoc, J. Żukd, P. Kopycińskid, D. Murzalinove, Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films. Thin. Solid Films 626, 70–75 (2017)

    ADS  Google Scholar 

  13. X. Di Dawei, P.W.Ivan Heli, A.G. Martin, C. Gavin, Optical characterisation of silicon nanocrystals embedded in SiO2/Si3N4 hybrid matrix for third generation photovoltaics. Nanoscale Res. Lett. 6, 612–618 (2011)

    ADS  Google Scholar 

  14. G. Conibeer, M. Green, E.-C. Cho, D. König, Y.H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink et al., Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin. Solid Films 516, 6748–6756 (2008)

    ADS  Google Scholar 

  15. P.J. Wu, Y.C. Wang, I.C. Chen, Fabrication of Si heterojunction solar cells using P-doped Si nanocrystals embedded in SiNx films as emitters. Nanoscale Res. Lett. 8(1), 457 (2013)

    ADS  Google Scholar 

  16. C. Jiang, M.A. Green, Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J. Appl. Phys. 99, 114902 (2006)

    ADS  Google Scholar 

  17. R Chaoui, B Mahmoudi, A Messaoud, Y SiAhmed, A Mefoued, B Mahmoudi, Silicon solar cell emitter profile tailoring using the DOSS diffusion technique. 1st Africa Photovoltaic Solar Energy Conference and exhibition. Durban, South Africa, 27–29 March (2014)

  18. T.V. Torchynska, L.G. Vega-Macotela, L. Khomenkova, A. Slaoui, Light-emitting mechanism varying in Si-rich-SiNx controlled by film’s composition. Adv. Nano. Res. 5(3), 261–279 (2017)

    Google Scholar 

  19. E.D. Palik, Handbook of Optical Constants of Solids Academic (Elsevier, New York, 1985), pp. 578–774

    Google Scholar 

  20. A.S. Keita, A.E. Naciri, F. Delachat, M. Carrada, G. Ferblantier, A. Slaoui, Spectroscopic ellipsometry investigation of the optical properties of nanostructured Si/SiNx films. J. Appl. Phys. 107, 093516 (2010)

    ADS  Google Scholar 

  21. B. Benyahia, F. Tiour, L. Guerbous, R. Chaoui, I. Menous, B. Mahmoudi, A. Mefoued, A. Guenda, Evolution of optical and structural properties of silicon nanocrystals embedded in silicon nitride films with annealing temperature. J. Nano Res. 49, 163–173 (2017)

    Google Scholar 

  22. N. Budini, P.A. Rinaldi, J.A. Schmidt, R.D. Arce, R.H. Buitrago, Influence of microstructure and hydrogen concentration on amorphous silicon crystallization. Thin Solid Films 518, 5349–5354 (2010)

    ADS  Google Scholar 

  23. L.V. Mercalo, E.M. Esposito, P.D. Veneri, G. Fameli, First and second-order Raman scattering in Si nanostructures within silicon nitride. Appl. Phys. Lett. 97, 153112 (2010)

    ADS  Google Scholar 

  24. A. Kshiragar, P. Nyaupane, D. Bodas, S.P. Duttagupta, S.A. Gangal, Deposition and characterization of low temperature silicon nitride films deposited by inductively coupled plasma CVD. Appl. Surf. Sci. 257, 5052–5058 (2011)

    ADS  Google Scholar 

  25. F. Komarov, L. Vlasukova, I. Parkhomenko, O. Milchanina, A. Mudryi, A. Togambaeva, O. Korolik, Raman study of light-emitting SiNx films grown on Si by low-pressure chemical vapor deposition. Thin Solid Films 579, 110–115 (2015)

    ADS  Google Scholar 

  26. O. Debieu, R.P. Nalini, J. Cardin, X. Portier, J. Perrière, F. Gourbilleau, Structural and optical characterization of pure Si-rich nitride thin films. Nanoscale Res. Lett. 8, 31–36 (2013)

    ADS  Google Scholar 

  27. D.H. Ma, W.J. Zhang, R.Y. Luo, Z.Y. Jiang, Q. Ma, X.B. Ma, Z.Q. Fan, D.Y. Song, L. Zhang, Effects of nitrogen impurities on the microstructure and electronic properties of P-doped Si nanocrystals emebedded in silicon-rich SiNx films. Superlattice. Microst. 93, 269–279 (2016)

    ADS  Google Scholar 

  28. S.K. Gupta, P.K. Jha, Modified phonon confinement model for size dependent Raman shift and linewidth of silicon nanocrystals. Solid. State. Commun. 49, 1989–1992 (2009)

    ADS  Google Scholar 

  29. N. Wada, S. Solin, J. Wong, S. Prochazka, Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4. J. Non-Cryst. Solids. 43, 7–15 (1981)

    ADS  Google Scholar 

  30. G Scardera, Correlating structural and optical properties of silicon nanocrystals embedded in silicon nitride: an experimental study of quantum confinement for photovoltaic applications. PhD thesis. UNSW Sydney (Australia) (2008)

  31. G. Scardera, T. Puzzer, I. Perez-Wurfl, G. Conibeer, The effects of annealing temperature on the photoluminescence from silicon nitride multilayer structures. J. Cryst. Growth 310, 3680 (2008)

    ADS  Google Scholar 

  32. G. Scardera, E. Bellet-Amalric, D. Bellet, T. Puzzer, E. Pink, G. Conibeer, Formation of a Si-Si3N4 nanocomposite from plasma enhanced chemical vapour deposition multilayer structures. J. Cryst. Growth. 310, 3685 (2008)

    ADS  Google Scholar 

  33. T.V. Torchynska, J.L. CasasEspinola, L. Khomenkova, E. Vergara Hernandez, J.A. AndracaAdame, A. Slaoui, Structural and light emitting properties of silicon-rich silicon nitride films grown by plasma enhanced-chemical vapor deposition. Mat. Sci. Semicon. Proc. 37, 46–50 (2015)

    Google Scholar 

  34. A. Kshirsagar, P. Nyaupane, D. Bodas, S.P. Duttagupta, S.A. Gangal, Deposition and characterization of low temperature silicon nitride films deposited by inductively coupled plasma CVD. Appl. Surf. Sci. 257, 5052–5058 (2011)

    ADS  Google Scholar 

  35. S. Ebraheem, A. El Saied, Band gap determination from diffuse reflectance measurements of irradiated lead borate glass system doped with TiO2 by using diffuse reflectance technique. Mat. Sci. Appl. 4, 324–329 (2013)

    Google Scholar 

  36. B. Karvaly, I. Hevesi, Investigations on diffuse reflectance spectra of V205 PowderZ. Naturforsch 26a, 245–249 (1971)

    ADS  Google Scholar 

  37. P. Singh, M.K. Harbola, D.D. Johnson, Better band gaps for wide-gap semiconductors from a locally corrected exchange-correlation potential that nearly eliminates self-interaction errors. J. Phys. Condens. Matter. 29(42), 424001 (2017)

    ADS  Google Scholar 

  38. O. Blázquez, J. López-Vidrier, S. Hernández, J. Montserrat, B. Garrido, Electro-optical properties of non-stoichiometric silicon nitride films for photovoltaic applications. Energy Procedia. 44, 145–150 (2014)

    Google Scholar 

  39. V.A. Gritsenko, Electronic structure of silicon nitride. Phys. Uspekhi. 55(5), 498–507 (2012)

    ADS  Google Scholar 

  40. R. Hazem, M. Izerrouken, A. Sari, S. Kermadi, M. Msimanga, A. Benyagoub, M. Maaza, M. Belgaid, M. Boumaour, Radiation damage induced by swift heavy ions in TiO2 sol–gel films nanocrystallines. Nucl. Instrum. Methods Phys. Res. B 304, 16–22 (2013)

    ADS  Google Scholar 

  41. T.Y. Kim, N.M. Park, K.H. Kim, G.Y. Sunga, Y.W. Ok, T.Y. Seong, C.J. Choi, Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl. Phys. Lett. 85, 5355–5359 (2004)

    ADS  Google Scholar 

  42. M.L. Mastronard, F.M. Flaig, D. Faulkner, E.J. Henderson, C. Kübel, U. Lemmer, G.A. Ozin, Size dependent absolute quantum yields for size–—separated collodially-stable silicon nanocrystals. Nano. Lett. 12, 337–342 (2012)

    ADS  Google Scholar 

  43. P.R.J. Wilson, T. Roschuk, K. Dunn, E.N. Normand, E. Chelomentsev, O.H.Y. Zalloum, J. Wojcik, P. Mascher, Effect of thermal treatment on the growth, structure and luminescence of nitride-passivated silicon nanoclusters. Nanoscale Res. Lett. 6, 168 (2011)

    ADS  Google Scholar 

  44. R. Amrani, F. Pichot, L. Chahed, Y. Cuminal, Amorphous-nanocrystalline transition in silicon thin films obtained by argon diluted silane PECVD. Cryst. Struct. Theor. Appl. 1, 57–61 (2012)

    Google Scholar 

  45. B.H. Yu, D. Chen, First-principles study on the electronic structure and phase transition of α, β and γ-Si3N4. Acta. Phys. Sin. 61, 197102 (2012)

    Google Scholar 

  46. L. Cui, M. Hu, Q. Wang, Y. Yang, Prediction of novel hard phases of Si3N4: first-principles calculations. J. Solid. State. Chem. 228, 20–26 (2015)

    ADS  Google Scholar 

  47. B.H. Kim, C.H. Cho, T.W. Kim, N.M. Park, G.Y. Sung, S.J. Park, Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4. Appl. Phys. Lett. 86, 091908 (2005)

    ADS  Google Scholar 

  48. T. Torchynska, L. Khomenkova, A. Slaoui, Modification of Light emission in si-rich silicon nitride films versus stoichiometry and excitation light energy. J. Electron. Mat. 47(7), 3927–3933 (2018)

    ADS  Google Scholar 

  49. C. Delerue, G. Allan, M. Lannoo, Theoretical aspects of the luminescence of porous silicon. Phys. Rev. B. 48, 11024–11036 (1993)

    ADS  Google Scholar 

  50. C.L. Wu, G.R. Lin, Inhomogeneous linewidth broadening and radiative lifetime dispersion of size dependent direct bandgap radiation in Si quantum dot. Aip. Adv. 2, 042162 (2012)

    ADS  Google Scholar 

  51. J. De la Torre, A. Souifi, A. Poncet, G. Bremond, G. Guillot, B. Garrido, J.R. Morante, Ground and first excited states observed in silicon nanocrystals by photocurrent technique. Solid. State Electron. 49(7), 1112–1117 (2005)

    ADS  Google Scholar 

  52. R. Zhang, X.Y. Chen, K. Zhang, W.Z. Shen, Photocurrent response of hydrogenated nanocrystalline silicon thin films. J. Appl. Phys. 100(10), 104310 (2006)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Fond National de la Recherche”, DGRSDT/MESRS, Algeria, Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Tiour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiour, F., Benyahia, B., Brihi, N. et al. Opto-structural properties of Si-rich SiNx with different stoichiometry. Appl. Phys. A 126, 59 (2020). https://doi.org/10.1007/s00339-019-3258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3258-5

Keywords

Navigation