Skip to main content
Log in

A Type I Defect and New Integrable Boundary Conditions for the Coupled Nonlinear Schrödinger Equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study two integrable systems associated with the coupled NLS equation: the integrable defect system and the integrable boundary systems. Regarding the first one, we present a type I defect condition, which is described by a Bäcklund transformation frozen at the defect location. For the resulting defect system, we prove its integrability both by showing the existence of an infinite set of conserved quantities and by implementing the classical r-matrix method. Regarding the second one, we present some new integrable boundary conditions for the coupled NLS equation by imposing suitable reductions on the defect conditions. Our new boundary conditions, unlike the usual boundary conditions (such as the Robin boundary), involve time derivatives of the coupled NLS fields and are characterised by non constant \(K(\lambda )\) matrices. We prove the integrability of our new boundary conditions by using Sklyanin’s approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avan, J., Doikou, A.: Liouville integrable defects: the non-linear Schrödinger paradigm. J. High Energ. Phys. 2012, 40 (2012)

    Article  Google Scholar 

  • Avan, J., Caudrelier, V., Doikou, A., Kundu, A.: Lagrangian and Hamiltonian structures in an integrable hierarchy and space-time duality. Nucl. Phys. B 902, 415–439 (2016)

    Article  MathSciNet  Google Scholar 

  • Avan, J., Caudrelier, V., Crampé, N.: From Hamiltonian to zero curvature formulation for classical integrable boundary conditions. J. Phys. A 51, 30LT01 (2018)

    Article  MathSciNet  Google Scholar 

  • Bowcock, P., Corrigan, E., Zambon, C.: Classically integrable field theories with defects. Int. J. Mod. Phys. A 19, 82–91 (2004)

    Article  MathSciNet  Google Scholar 

  • Bowcock, P., Corrigan, E., Zambon, C.: Affine Toda field theories with defects. J. High Energ. Phys. 2004, 056 (2004)

    Article  MathSciNet  Google Scholar 

  • Busch, T., Anglin, J.R.: Dark-bright solitons in inhomogeneous Bose-Einstein condensates. Phys. Rev. Lett. 87, 010401 (2001)

    Article  Google Scholar 

  • Caudrelier, V.: On a systematic approach to defects in classical integrable field theories. Int. J. Geom. Meth. Mod. Phys. 5(7), 1085 (2008)

    Article  MathSciNet  Google Scholar 

  • Caudrelier, V., Kundu, A.: A multisymplectic approach to defects in integrable classical field theory. J. High Energ. Phys. 02, 088 (2015)

    Article  MathSciNet  Google Scholar 

  • Caudrelier, V., Stoppato, M.: A connection between the classical \(r\)-matrix formalism and covariant Hamiltonian field theory. J. Geom. Phys. 148, 103546 (2020)

    Article  MathSciNet  Google Scholar 

  • Caudrelier, V., Zhang, C.: The vector nonlinear Schrödinger equation on the half-line. J. Phys. A: Math. Theor. 45(10), 105201 (2012)

    Article  Google Scholar 

  • Caudrelier, V., Crampe, N., Dibaya, C.M.: Nonlinear mirror image method for nonlinear Schrödinger equation: Absorption/emission of one soliton by a boundary. Stud. Appl. Math. 148, 715–757 (2022)

    Article  Google Scholar 

  • Corrigan, E., Zambon, C.: Jump-defects in the nonlinear Schrödinger model and other non-relativistic field theories. Nonlinearity 19, 1447 (2006)

    Article  MathSciNet  Google Scholar 

  • Corrigan, E., Zambon, C.: A new class of integrable defects. J. Phys. A 42, 475203 (2009)

    Article  MathSciNet  Google Scholar 

  • Doikou, A.: Classical impurities associated to high rank algebras. Nucl. Phys. B 884, 142 (2014)

    Article  MathSciNet  Google Scholar 

  • Doikou, A.: Classical integrable defects as quasi Bäcklund transformations. Nucl. Phys. B 911, 212 (2016)

    Article  Google Scholar 

  • Doikou, A., Fioravanti, D., Ravanini, F.: The generalized non-linear Schrödinger model on the interval. Nuclear Phys. B 790, 465–492 (2008)

    Article  MathSciNet  Google Scholar 

  • Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (2007)

    MATH  Google Scholar 

  • Gruner, K.T.: Dressing a new integrable boundary of the nonlinear Schrödinger equation, arXiv preprint arXiv:2008.03272 (2020)

  • Gruner, K.T.: Soliton solutions of the nonlinear Schrödinger equation with defect conditions. Nonlinearity 34, 6017 (2021)

    Article  MathSciNet  Google Scholar 

  • Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformations in Integrable Systems: Theory and Their Applications. Springer, Berlin (2005)

    Book  Google Scholar 

  • Habibullin, I.T.: The Bäcklund transformation and integrable initial boundary value problems. Matematicheskie Zametki 49(4), 130–137 (1991)

    MathSciNet  MATH  Google Scholar 

  • Habibullin, I., Kundu, A.: Quantum and classical integrable sine-Gordon model with defect. Nucl. Phys. B 795, 549 (2008)

    Article  MathSciNet  Google Scholar 

  • Kodama, Y.: Theory of canonical transformations for nonlinear evolution equations II. Prog. Theo. Phys. 57, 1900–1916 (1977)

    Article  MathSciNet  Google Scholar 

  • Kodama, Y., Wadati, M.: Theory of canonical transformations for nonlinear evolution equations. I. Prog. Theo. Phys. 56, 1740–1755 (1976)

    Article  MathSciNet  Google Scholar 

  • Manakov, S.V.: On the theory of two-dimensional stationary self focussing of electromagnetic waves. Soviet Phys. JETP 38, 248–253 (1974)

    Google Scholar 

  • Sklyanin, E.K.: Boundary conditions for integrable equations. Funct. Anal. Appl. 21(2), 164–166 (1987)

    Article  MathSciNet  Google Scholar 

  • Wright, O.C.: The Darboux Transformation of Some Manakov Systems. Appl. Math. Lett. 16, 647–652 (2003)

    Article  MathSciNet  Google Scholar 

  • Xia, B.: On the nonlinear Schrödinger equation with a boundary condition involving a time derivative of the field. J. Phys. A: Math. Theor. 54, 165202 (2021)

    Article  Google Scholar 

  • Zambon, C.: The classical nonlinear Schrödinger model with a new integrable boundary. J. High Energ. Phys. 2014, 36 (2014)

    Article  MathSciNet  Google Scholar 

  • Zhang, C.: On the inverse scattering transform for the nonlinear Schrödinger equation on the half-line, arXiv preprint arXiv:2106.02336, (2021)

  • Zhang, C., Zhang, D.: Vector NLS solitons interacting with a boundary. Commun. Theor. Phys. 73(4), 045005 (2021)

    Article  MathSciNet  Google Scholar 

  • Zhou, R., Li, P., Gao, Y.: Equal-Time and Equal-Space Poisson Brackets of the N-Component Coupled NLS Equation. Commun. Theor. Phys. 67, 347–349 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to express his sincerest gratitude to the referees for their valuable comments, which have helped him to improve this paper. This work was supported by the National Natural Science Foundation of China (Grant No. 11771186) and 333 Project of Jiangsu Province (No. BRA2020246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoqiang Xia.

Additional information

Communicated by Robert Buckingham.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, B. A Type I Defect and New Integrable Boundary Conditions for the Coupled Nonlinear Schrödinger Equation. J Nonlinear Sci 32, 53 (2022). https://doi.org/10.1007/s00332-022-09809-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-022-09809-6

Keywords

Navigation