Skip to main content
Log in

Hydrodynamic Capture and Release of Passively Driven Particles by Active Particles Under Hele-Shaw Flows

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The transport of active and passive particles plays central roles in diverse biological phenomena and engineering applications. In this paper, we present a theoretical investigation of a system consisting of an active particle and a passive particle in a confined micro-fluidic flow. The introduction of an external flow is found to induce the capture of the passive particle by the active particle via long-range hydrodynamic interactions among the particles. This hydrodynamic capture mechanism relies on an attracting stable equilibrium configuration formed by the particles, which occurs when the external flow intensity exceeds a certain threshold. We evaluate this threshold by studying the stability of the equilibrium configurations analytically and numerically. Furthermore, we study the dynamics of typical capture and non-capture events and characterize the basins of attraction of the equilibrium configurations. Our findings reveal a critical dependence of the hydrodynamic capture mechanism on the external flow intensity. Through adjusting the external flow intensity across the stability threshold, we demonstrate that the active particle can capture and release the passive particle in a controllable manner. Such a capture-and-release mechanism is desirable for biomedical applications such as the capture and release of therapeutic payloads by synthetic micro-swimmers in targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelmohsen, L.K.E.A., Peng, F., Tu, Y., Wilson, D.A.: Micro- and nano-motors for biomedical applications. J. Mater. Chem. B 2, 2395–2408 (2014)

    Article  Google Scholar 

  • Aragones, J.L., Steimel, J.P., Alexander-Katz, A.: Elasticity-induced force reversal between active spinning particles in dense passive media. Nat. Commun. 7, 11325 (2016)

    Article  Google Scholar 

  • Beatus, T., Tlusty, T., Bar-Ziv, R.: Phonons in a one-dimensional microfluidic crystal. Nat. Phys. 2(11), 743–748 (2006)

    Article  Google Scholar 

  • Beatus, T., Bar-Ziv, R., Tlusty, T.: Anomalous microfluidic phonons induced by the interplay of hydrodynamic screening and incompressibility. Phys. Rev. Lett. 99(12), 124502 (2007)

    Article  Google Scholar 

  • Beatus, T., Tlusty, T., Bar-Ziv, R.: Burgers shock waves and sound in a 2D microfluidic droplets ensemble. Phys. Rev. Lett. 103(11), 114502 (2009)

    Article  Google Scholar 

  • Beatus, T., Bar-Ziv, R.H., Tlusty, T.: The physics of 2D microfluidic droplet ensembles. Phys. Rep. 516(3), 103–145 (2012)

    Article  Google Scholar 

  • Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O., Bartolo, D.: Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95–98 (2013)

    Article  Google Scholar 

  • Brotto, T., Caussin, J.-B., Lauga, E., Bartolo, D.: Hydrodynamics of confined active fluids. Phys. Rev. Lett. 110(3), 038101 (2013)

    Article  Google Scholar 

  • Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops, and Particles. Courier Corporation, North Chelmsford (2005)

    Google Scholar 

  • Contino, M., Lushi, E., Tuval, I., Kantsler, V., Polin, M.: Microalgae scatter off solid surfaces by hydrodynamic and contact forces. Phys. Rev. Lett. 115(25), 258102 (2015)

    Article  Google Scholar 

  • Das, A., Polley, A., Rao, M.: Phase segregation of passive advective particles in an active medium. Phys. Rev. Lett. 116(6), 068306 (2016)

    Article  Google Scholar 

  • Delmotte, B., Keaveny, E., Plouraboue, F., Climent, E.: Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method. J. Comput. Phys. 302, 524–547 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Delmotte, B., Driscoll, M., Chaikin, P., Donev, A.: Hydrodynamic shocks in microroller suspensions. Phys. Rev. Fluids 2, 092301 (2017a)

    Article  Google Scholar 

  • Delmotte, B., Driscoll, M., Donev, A., Chaikin, P.: A minimal model for a hydrodynamic fingering instability in microroller suspensions. Phys. Rev. Fluids 2(11), 114301 (2017b)

    Article  Google Scholar 

  • Desreumaux, N., Florent, N., Lauga, E., Bartolo, D.: Active and driven hydrodynamic crystals. Euro. Phys. J. E 35(8), 1–11 (2012)

    Article  Google Scholar 

  • Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93(9), 098103 (2004)

    Article  Google Scholar 

  • Driscoll, M., Delmotte, B., Youssef, M., Sacanna, S., Donev, A., Chaikin, P.: Unstable fronts and motile structures formed by microrollers. Nat. Phys. 13(4), 375–379 (2017)

    Article  Google Scholar 

  • Ezhilan, B., Saintillan, D.: Transport of a dilute active suspension in pressure-driven channel flow. J. Fluid Mech. 777, 482–522 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Fleury, J.B., Schiller, U.D., Thutupalli, S., Gompper, G., Seemann, R.: Mode coupling of phonons in a dense one-dimensional microfluidic crystal. N. J. Phys. 16, 063029 (2014)

    Article  Google Scholar 

  • Gao, W., Wang, J.: The environmental impact of micro/nanomachines: a review. ACS Nano 8(4), 3170–3180 (2014)

    Article  Google Scholar 

  • Gao, W., Kagan, D., Pak, O.S., Clawson, C., Campuzano, S., Chuluun-Erdene, E., Shipton, E., Fullerton, E.E., Zhang, L., Lauga, E., Wang, J.: Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 8(3), 460–467 (2012)

    Article  Google Scholar 

  • Goldstein, R.E.: Green algae as model organisms for biological fluid dynamics. Annu. Rev. Fluid Mech. 47(1), 343–375 (2015)

    Article  MathSciNet  Google Scholar 

  • Ishikawa, T., Simmonds, M.P., Pedley, T.J.: Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119–160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Ishikawa, T., Locsei, J.T., Pedley, T.J.: Development of coherent structures in concentrated suspensions of swimming model micro-organisms. J. Fluid Mech. 615, 401–431 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kanso, E., Tsang, A.C.H.: Dipole models of self-propelled bodies. Fluid Dyn. Res. 46(6), 061407 (2014)

    Article  Google Scholar 

  • Kanso, E., Tsang, A.C.H.: Pursuit and synchronization in hydrodynamic dipoles. J. Nonlinear Sci. 25, 1141–1152 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Katuri, J., Seo, K.D., Kim, D.S., Sanchez, S.: Artificial micro-swimmers in simulated natural environments. Lab Chip 16, 1101–1105 (2016)

    Article  Google Scholar 

  • Krafnick, R.C., García, A.E.: Impact of hydrodynamics on effective interactions in suspensions of active and passive matter. Phys. Rev. E 91(2), 022308 (2015)

    Article  Google Scholar 

  • Lauga, E., Powers, T.R.: The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72(9), 096601 (2009)

    Article  MathSciNet  Google Scholar 

  • Lefauve, A., Saintillan, D.: Globally aligned states and hydrodynamic traffic jams in confined suspensions of active asymmetric particles. Phys. Rev. E 89(2), 021002 (2014)

    Article  Google Scholar 

  • Marchetti, M.C., Joanny, J.F., Ramaswamy, S., Liverpool, T.B., Prost, J., Rao, M., Simha, R.A.: Hydrodynamics of soft active matter. Rev. Mod. Phys. 85(3), 1143 (2013)

    Article  Google Scholar 

  • Mathijssen, A.J.T.M., Shendruk, T.N., Yeomans, J.M., Doostmohammadi, A.: Upstream swimming in microbiological flows. Phys. Rev. Lett. 116(2), 028104 (2016)

    Article  MATH  Google Scholar 

  • Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)

    Article  Google Scholar 

  • Pak, O.S., Gao, W., Wang, J., Lauga, E.: High-speed propulsion of flexible nanowire motors: Theory and experiments. Soft Matter 7(18), 8169–8181 (2011)

    Article  Google Scholar 

  • Popel, A.S., Johnson, P.C.: Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37, 43–69 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Ramachandran, A., Khair, A.S.: The dynamics and rheology of a dilute suspension of hydrodynamically janus spheres in a linear flow. J. Fluid Mech. 633, 233–269 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Ramaswamy, S.: The mechanics and statistics of active matter. Annu. Rev. Condens. 1, 323–345 (2010)

    Article  Google Scholar 

  • Ren, L., Zhou, D., Mao, Z., Xu, P., Huang, Tony J., Mallouk, T.E.: Rheotaxis of bimetallic micromotors driven by chemical-acoustic hybrid power. ACS Nano 11(10), 10591–10598 (2017)

    Article  Google Scholar 

  • Saintillan, D., Shelley, M.J.: Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations. Phys. Rev. Lett. 100(17), 178103 (2008)

    Article  Google Scholar 

  • Sanchez, T., Chen, D.T.N., DeCamp, S.J., Heymann, M., Dogic, Z.: Spontaneous motion in hierarchically assembled active matter. Nature 491(7424), 431 (2012)

    Article  Google Scholar 

  • Sarig, I., Starosvetsky, Y., Gat, A.D.: Interaction forces between microfluidic droplets in a hele-shaw cell. J. Fluid Mech. 800, 264–277 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Schwarz-Linek, J., Valeriani, C., Cacciuto, A., Cates, M.E., Marenduzzo, D., Morozov, A.N., Poon, W.C.K.: Phase separation and rotor self-assembly in active particle suspensions. Proc. Natl. Acad. Sci. USA 109(11), 4052–4057 (2012)

    Article  Google Scholar 

  • Shen, B., Leman, M., Reyssat, M., Tabeling, P.: Dynamics of a small number of droplets in microfluidic hele-shaw cells. Exp. Fluids 55(5), 1728 (2014)

    Article  Google Scholar 

  • Shen, B., Ricouvier, J., Malloggi, F., Tabeling, P.: Designing colloidal molecules with microfluidics. Adv. Sci. 3(6), 1600012 (2016)

    Article  Google Scholar 

  • Shklyaev, O.E., Shum, H., Yashin, V.V., Balazs, A.C.: Convective self-sustained motion in mixtures of chemically active and passive particles. Langmuir 33(32), 7873–7880 (2017)

    Article  Google Scholar 

  • Soler, L., Sanchez, S.: Catalytic nanomotors for environmental monitoring and water remediation. Nanoscale 6, 7175–7182 (2014)

    Article  Google Scholar 

  • Spagnolie, S.E., Lauga, E.: Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105–147 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Spagnolie, S.E., Moreno-Flores, G.R., Bartolo, D., Lauga, E.: Geometric capture and escape of a microswimmer colliding with an obstacle. Soft Matter 11(17), 3396–3411 (2015)

    Article  Google Scholar 

  • Swan, J.W., Khair, A.S.: On the hydrodynamics of ‘slip-stick’ spheres. J. Fluid Mech. 606, 115–132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Takagi, D., Palacci, J., Braunschweig, A.B., Shelley, M.J., Zhang, J.: Hydrodynamic capture of microswimmers into sphere-bound orbits. Soft Matter 10(11), 1784–1789 (2014)

    Article  Google Scholar 

  • Takatori, S.C., Brady, J.F.: A theory for the phase behavior of mixtures of active particles. Soft Matter 11(40), 7920–7931 (2015)

    Article  Google Scholar 

  • Trivedi, R.R., Maeda, R., Abbott, N.L., Spagnolie, S.E., Weibel, D.B.: Bacterial transport of colloids in liquid crystalline environments. Soft Matter 11(43), 8404–8408 (2015)

    Article  Google Scholar 

  • Tsang, A.C.H., Kanso, E.: Flagella-induced transitions in the collective behavior of confined microswimmers. Phys. Rev. E 90(2), 021001 (2014)

    Article  Google Scholar 

  • Tsang, A.C.H., Kanso, E.: Circularly confined microswimmers exhibit multiple global patterns. Phys. Rev. E 91(4), 043008 (2015)

    Article  Google Scholar 

  • Tsang, A.C.H., Kanso, E.: Density shock waves in confined microswimmers. Phys. Rev. Lett. 116(4), 048101 (2016)

    Article  Google Scholar 

  • Tsang, A.C.H., Shelley, M.J., Kanso, E.: Activity-induced instability of phonons in 1D microfluidic crystals. Soft Matter 14(6), 945–950 (2017)

    Article  Google Scholar 

  • Uspal, W.E., Doyle, P.S.: Scattering and nonlinear bound states of hydrodynamically coupled particles in a narrow channel. Phys. Rev. E 85(1), 016325 (2012a)

    Article  Google Scholar 

  • Uspal, W.E., Doyle, P.S.: Collective dynamics of small clusters of particles flowing in a quasi-two-dimensional microchannel. Soft Matter 8(41), 10676–10686 (2012b)

    Article  Google Scholar 

  • Uspal, W.E., Burak Eral, H., Doyle, P.S.: Engineering particle trajectories in microfluidic flows using particle shape. Nat. Commun. 4, 2666 (2013)

    Article  Google Scholar 

  • Wang, J., Gao, W.: Nano/microscale motors: biomedical opportunities and challenges. ACS Nano 6(7), 5745–5751 (2012)

    Article  Google Scholar 

  • Wang, W., Duan, W., Sen, A., Mallouk, T.E.: Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles. Proc. Natl. Acad. Sci. USA 110(44), 17744–17749 (2013)

    Article  Google Scholar 

  • Wioland, H., Lushi, E., Goldstein, R.E.: Directed collective motion of bacteria under channel confinement. N. J. Phys. 18(7), 075002 (2016)

    Article  Google Scholar 

  • Wysocki, A., Winkler, R.G., Gompper, G.: Propagating interfaces in mixtures of active and passive Brownian particles. N. J. Phys. 18(12), 123030 (2016)

    Article  Google Scholar 

  • Zöttl, A., Stark, H.: Nonlinear dynamics of a microswimmer in poiseuille flow. Phys. Rev. Lett. 108(21), 218104 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Grant Mishler acknowledges financial support through a Hayes Research Fellowship. Alan Cheng Hou Tsang thanks the Croucher Foundation for a Postdoctoral Fellowship. On Shun Pak acknowledges support from the Packard Junior Faculty Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to On Shun Pak.

Additional information

Communicated by Eva Kanso.

Appendices

Appendices

Dynamic Equivalence for Opposite Rotational Mobilities

Here, we demonstrate via a transformation of coordinates, in the relative frame of reference given by (4), the interaction between an active particle with \(\nu >0\) and a passive particle is dynamically equivalent to the interaction between an active particle with \(\nu <0\) and a passive particle. Namely, we start by considering the equations of motion for the case of \(\nu >0\), and show that the equations have the same form as for the case of \(\nu <0\) after the transformation. For convenience, we rewrite (4) for the case of active particle with \(\nu >0\) in polar coordinate, \(\beta =R\mathrm {e}^{ \mathrm {i}\theta }\),

$$\begin{aligned} \begin{aligned} \dfrac{\hbox {d}}{\hbox {d}t}(R\mathrm {e}^{ -\mathrm {i}\theta })&=U\mathrm {e}^{ -\mathrm {i}\alpha } -\mu \frac{a^2 U\mathrm {e}^{ \mathrm {i}(\alpha - 2\theta ) }}{R^2}+\frac{2 f_0(2a)^{13}\mathrm {e}^{ -\mathrm {i}\theta }}{R^{13}}, \\ \dot{\alpha }&=\left| \nu _o \right| \text {Re}\left[ \frac{2a^2(1-\mu )V}{R^3}\mathrm {i}\mathrm {e}^{ \mathrm {i}(2\alpha -3\theta ) }\right] , \end{aligned} \end{aligned}$$
(9)

where we set \(\nu =\left| \nu _o \right| \) for the case of \(\nu >0\) and \(\nu =-\left| \nu _o \right| \) for the case of \(\nu <0\) . We consider the transformation \(\theta =\theta ^{*}+\pi \), \(\alpha =\alpha ^{*}+\pi \). Direct substitution into (9) gives

$$\begin{aligned} \begin{aligned} \dfrac{\hbox {d}}{\hbox {d}t}(R\mathrm {e}^{ -\mathrm {i}\theta ^{*} })&=U\mathrm {e}^{ -\mathrm {i}\alpha ^{*} } -\mu \frac{a^2 U\mathrm {e}^{ \mathrm {i}(\alpha ^{*}- 2\theta ^{*}) }}{R^2}+\frac{2 f_0(2a)^{13}\mathrm {e}^{ -\mathrm {i}\theta ^{*} }}{R^{13}}, \\ \dot{\alpha }^{*}&=-\left| \nu _o \right| \text {Re}\left[ \frac{2a^2(1-\mu )V}{R^3}\mathrm {i}\mathrm {e}^{ \mathrm {i}(2\alpha ^{*}-3\theta ^{*}) }\right] , \end{aligned} \end{aligned}$$
(10)

which take the same form as for the case of \(\nu <0\). This indicates that the interaction of an active particle with \(\nu >0\) and a passive particle under the initial conditions \((R(0),\theta (0),\alpha (0))=(R_o,\theta _o+\pi ,\alpha _o+\pi )\) is dynamically equivalent to the interaction of an active particle with \(\nu <0\) and a passive particle under the initial conditions \((R(0),\theta (0),\alpha (0))=(R_o,\theta _o,\alpha _o)\).

\(\theta \)\(\alpha \) Phase Space for Capture and Non-capture Events

Figure 11 depicts the \(\theta \)\(\alpha \) phase diagrams for capture and non-capture events for different external flow intensities V. It is observed that capture region (represented by the white space) lies along the line \(\theta = \pi + \alpha \), which corresponds to the scenario of an active particle with a propulsion direction pointing directly toward the center of the passive particle. The capture region enlarges with an increased external flow intensity V. When the external flow intensity is sufficiently high (Fig. 11d), we remark that capture can occur for all \(\theta \) for certain values of \(\alpha \), enhancing the capture process.

Fig. 11
figure 11

a The active particle points directly toward the passive particle when \(\theta =\pi +\alpha \), which facilitates the capture process. bd \(\theta \)\(\alpha \) phase diagrams for capture at different external flow intensities: b \(V=5\); c \(V=10\); d \(V=20\). Parameter values are \(U=1\), \(a=1\), \(\mu =0.5\), \(\nu =0.5\), \(R(0)=20\). The white and black spaces denote the regions for capture and non-capture, respectively. The dashed lines indicate the parameter values for \(\theta =\pi +\alpha \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishler, G., Tsang, A.C.H. & Pak, O.S. Hydrodynamic Capture and Release of Passively Driven Particles by Active Particles Under Hele-Shaw Flows. J Nonlinear Sci 28, 1379–1396 (2018). https://doi.org/10.1007/s00332-018-9454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9454-1

Keywords

Mathematics Subject Classification

Navigation