Skip to main content
Log in

Arabidopsis rd29A::DREB1A enhances freezing tolerance in transgenic potato

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The freezing tolerance of 38 independent transgenic potato lines derived from the cultivar Desiree was tested in vitro using plantlets. The lines were transgenic for the DREB1A gene under control of the rd29A promoter, both of which were derived from Arabidopsis thaliana. The level of damage caused by freezing varied significantly among the transgenic clones and a non-transgenic control (cv. Desiree). Phenotypic evaluation indicated that the variable responses to freezing were attributable to genotypic variation, but freezing tolerance was not dependent on the number of insertions. Northern blot analysis using a DREB1A cDNA probe revealed high levels of DREB1A expression among the transgenic clones during the initial cold exposure at 4°C (after 2 h) and in the early stages of freezing (−20°C, 1–10 min). Furthermore, a linear correlation was detected between the level of expression and the phenotypic response for all lines except D138. Thus, in the case of potato, a significant increase in freezing tolerance was observed in vitro on a small scale following the introduction of rd29A::DREB1A. Additional testing will show whether this strategy can be used for tolerance breeding in potato and to increase the freezing tolerance of other agriculturally important crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CBF:

C-repeat-binding factor

CRT:

C-repeat

DRE:

Dehydration-responsive element

DREB:

Dehydration-responsive element binding

DSC:

Non-transgenic cv. Desiree as control

r :

Correlation coefficient

RCBD:

Randomized complete block design

rd29A:

Responsive drought 29A

RT:

Room temperature

References

  • Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin CT, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA 93:13404–13409

    Article  PubMed  CAS  Google Scholar 

  • Bamberg J, Palta JP, Vega SE (2005) Solanum commersonii cytoplasm does not improve freezing tolerance in substitution backcross hybrids with frost-sensitive potato species. Am J Potato Res 82:251–254

    Google Scholar 

  • Behnam B, Kikuchi K, Celebi-Toprak F, Yamanaka S, Kasuga M, Yamaguchi-Shinozaki K, Watanabe KN (2006) The Arabidopsis DREB1A gene driven by the stress-inducible rd29A promoter increases salt-stress tolerance in tetrasomic tetraploid potato (Solanum tuberosum) in proportion to its copy number. Plant Biotechnol 23:169–177

    CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Celebi-Toprak F, Behnam B, Serrano G, Kasuga M, Yamaguchi-Shinozaki K, Naka H, Watanabe JA, Yamanaka S, Watanabe KN (2005) Tolerance to salt stress in transgenic tetrasomic tetraploid potato, Solanum tuberosum cv. Desiree appears to be induced by DREB1A gene and rd29A promoter of Arabidopsis thaliana. Breed Sci 55:311–320

    Article  CAS  Google Scholar 

  • Choi DW, Rodriguez EM, Close TJ (2002) Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol 129:1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Cutler AJ, Saleem M, Kendall E, Gustav LV, Georges F (1989) Winter flounder antifreeze protein improves the cold hardiness of plant tissues. J Plant Physiol 135:351–354

    CAS  Google Scholar 

  • Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Gao MJ, Allard G, Byass L, Flanagan AM, Singh J (2002) Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol 49:459–471

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  PubMed  CAS  Google Scholar 

  • Graham D, Patterson BD (1982) Responses of plants to low, non-freezing temperatures: proteins, metabolism and acclimation. Annu Rev Plant Physiol 33:347–372

    Article  CAS  Google Scholar 

  • Hayashi H, Alia ML, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Jones L, Hamilton AJ, Voinnet O, Thomas CL, Maule AJ, Baulcombe DC (1999) RNA–DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 11:2291–2301

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45(3):346–350

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed  CAS  Google Scholar 

  • Longstaff M, Newell CA, Boonstra B, Strachan G, Learmonth D, Harris WJ, Porter AJ, Hamilton WDO (1998) Expression of characterization of single-chain antibody fragments produced in transgenic plants against the organic herbicides atrazine and paraquot. Biochem Biophys Acta 1381:147–160

    PubMed  CAS  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993

    Article  PubMed  CAS  Google Scholar 

  • Mora-Herrera ME, Lopez-Delgado H, Castillo-Morales A, Foyer CH (2005) Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Physiol Planta 125:430–440

    CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    Article  PubMed  CAS  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  PubMed  CAS  Google Scholar 

  • Ortiz R, Watanabe KN (2004) Genetic contribution to breeding polyploidy crops. Rec Res Dev Genet Breed 1:269–286

    Google Scholar 

  • Peach C, Velten J (1991) Transgenic expression variability position effect of CAT and GUS reporter genes driven by linked divergent T DNA promoters. Plant Mol Biol 17:49–60

    Article  PubMed  CAS  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    Article  PubMed  CAS  Google Scholar 

  • Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed  CAS  Google Scholar 

  • Seppanen MM, Coleman GD (2003) Characterization of genotypic variation in stress gene expression and photosynthetic parameters in potato. Plant Cell Environ 26:401–410

    Article  CAS  Google Scholar 

  • Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water stress response. Plant Physiol 115:327–334

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular response to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 95:14570–14575

    Article  PubMed  CAS  Google Scholar 

  • St John JB, Christiansen MN, Ashworth EN, Gentner WA (1979) Effect of BASF 13-338, a substituted pyradazinone, on linolenic acid levels and winter-hardiness of cereals. Crop Sci 19:65–69

    Article  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (2001) So what’s new in the field of plant cold acclimation? Lots! Plant Physiol 125:89–93

    Article  PubMed  CAS  Google Scholar 

  • Vayda ME (1994) Environmental stress and its impact on potato yield. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB, Wallingford, pp 239–261

    Google Scholar 

  • Vega SE, del Rio AH, Bamberg JB, Palta JP (2004) Evidence for the up-regulation of stearoyl-ACP (A9) desaturase gene expression during cold acclimation. Am J Potato Res 81:125–135

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236:331–340

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Life Science Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, Grant “S” no. H16-1007 from the University of Tsukuba, and a Grant-in-Aid (Kiban A no.17208001) from the Japan Society for the Promotion of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo N. Watanabe.

Additional information

Communicated by H. Ebinuma.

Babak Behnam and Akira Kikuchi equally contributed for this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behnam, B., Kikuchi, A., Celebi-Toprak, F. et al. Arabidopsis rd29A::DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Rep 26, 1275–1282 (2007). https://doi.org/10.1007/s00299-007-0360-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0360-5

Keywords

Navigation