Skip to main content
Log in

Ligninolytic Enzymes of Endospore-Forming Bacillus aryabhattai BA03

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In this work we investigated the enzymes produced by Bacillus aryabhattai BA03, particularly in those involved in ligninolytic activities such as laccases (Lac), lignin peroxidases (LiP) and Mn-dependent peroxidase (MnD-P). In this way, the maximal production of Lac (0.069 ± 0.000 U/mL) was obtained at pH 9, and 37 ºC after 72 h. LiP expressed the highest activity at 96 h in acid medium at 37 ºC (0.741 ± 0.029 U/mL). Meanwhile, the strain produced MnD-P (1.052 ± 0.001 U/mL) at the highest temperature assayed (44 ºC) and pH 7 at 72 h. In addition, this microorganism produced resistant endospores able to germinate after the sterilization program (121 ºC, 15 min) showing a high enzymatic activity. Using the heat-treated culture as inoculum, the percentage of decolorization of 150 mg/L of Coomassie Brillant Blue reached 89.42 ± 0.11% in only 24 h. These results open the use of these enzymes and endospores in bioremediation processes carried out under different temperatures and pH values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Organization for Economic Cooperation and Development (2005) A framework for biotechnology statistics. OECD Publishing. https://www.oecd.org/sti/inno/34935605.pdf. Accesed 28 Dec 2019

  2. Heux S, Meynial-Salles I, O’Donohue MJ, Dumon C (2015) White biotechnology: state of the art strategies for the development of biocatalysts for biorefining. Biotechnol Adv 33:1653–1670. https://doi.org/10.1016/j.biotechadv.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  3. Choi JM, Han SS, Kim HS (2015) Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv 33:1443–1454. https://doi.org/10.1016/j.biotechadv.2015.02.014

    Article  CAS  PubMed  Google Scholar 

  4. Alcalde M, Ferrer M, Plou FJ, Ballesteros A (2006) Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 24:281–287. https://doi.org/10.1016/j.tibtech.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  5. Singhania RR, Patel AK, Thomas L, et al (2015) Chapter 13—industrial enzymes. In: Pandey A, Hofer R, Larroche C, et al (eds) Industrial biorefineries & white biotechnology. Elsevier, Amsterdam, pp 473–497

    Chapter  Google Scholar 

  6. Falade AO, Nwodo UU, Iweriebor BC (2017) Lignin peroxidase functionalities and prospective applications. Microbiologyopen 6:1–14. https://doi.org/10.1002/mbo3.394

    Article  CAS  Google Scholar 

  7. Singh RL, Singh PK, Singh RP (2015) Enzymatic decolorization and degradation of azo dyes—a review. Int Biodeterior Biodegrad 104:21–31. https://doi.org/10.1016/j.ibiod.2015.04.027

    Article  CAS  Google Scholar 

  8. Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impacts 17:326–342. https://doi.org/10.1039/C4EM00627E

    Article  CAS  PubMed  Google Scholar 

  9. Roth S, Spiess AC (2015) Laccases for biorefinery applications: a critical review on challenges and perspectives. Bioprocess Biosyst Eng 38:2285–2313. https://doi.org/10.1007/s00449-015-1475-7

    Article  CAS  PubMed  Google Scholar 

  10. Pezzella C, Guarino L, Piscitelli A (2015) How to enjoy laccases. Cell Mol Life Sci 72:923–940. https://doi.org/10.1007/s00018-014-1823-9

    Article  CAS  PubMed  Google Scholar 

  11. Fernandes Rigamonte Alves T, Batista Da Silveira W, Lopes Passos FM, Zucchi TD (2014) Laccases from actinobacteria—what we have and what to expect. Adv Microbiol 4:285–296. https://doi.org/10.4236/aim.2014.46035

    Article  CAS  Google Scholar 

  12. Margot J, Bennati-Granier C, Maillard J (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3:63. https://doi.org/10.1186/2191-0855-3-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Siroosi M, Amoozegar MA, Khajeh K (2016) Purification and characterization of an alkaline chloride-tolerant laccase from a halotolerant bacterium, Bacillus sp. strain WT. J Mol Catal B 134:89–97. https://doi.org/10.1016/j.molcatb.2016.10.001

    Article  CAS  Google Scholar 

  14. Gonzalo de G, Colpa DI, Habib MHM, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119. https://doi.org/10.1016/j.jbiotec.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  15. Sondhi S, Sharma P, George N, et al (2015) An extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4, with a potential to biobleach softwood pulp. 3 Biotech 5:175–185. https://doi.org/10.1007/s13205-014-0207-z

    Article  PubMed  Google Scholar 

  16. Gong G, Kim S, Lee SM (2017) Complete genome sequence of Bacillus sp. 275, producing extracellular cellulolytic, xylanolytic and ligninolytic enzymes. J Biotechnol 254:59–62. https://doi.org/10.1016/j.jbiotec.2017.05.021

    Article  CAS  PubMed  Google Scholar 

  17. Asina FNU, Brzonova I, Kozliak E (2017) Microbial treatment of industrial lignin: successes, problems and challenges. Renew Sustain Energy Rev 77:1179–1205. https://doi.org/10.1016/j.rser.2017.03.098

    Article  CAS  Google Scholar 

  18. Tian JH, Pourcher AM, Klingelschmitt F (2016) Class P dye-decolorizing peroxidase gene: degenerated primers design and phylogenetic analysis. J Microbiol Methods 130:148–153. https://doi.org/10.1016/j.mimet.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  19. Dawkar VV, Jadhav UU, Tamboli DP, Govindwar SP (2010) Efficient industrial dye decolorization by Bacillus sp. VUS with its enzyme system. Ecotoxicol Environ Saf 73:1696–1703. https://doi.org/10.1016/j.ecoenv.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  20. Paz A, Carballo J, Pérez MJ, Domínguez JM (2017) Biological treatment of model dyes and textile wastewaters. Chemosphere 181:168–177. https://doi.org/10.1016/j.chemosphere.2017.04.046

    Article  CAS  PubMed  Google Scholar 

  21. Paz A, Outeiriño D, Souza de P, Oliveira R, Domínguez JM (2018) Fed-batch production of vanillin by Bacillus aryabhattai BA03 N Biotechnol 40:186–191. https://doi.org/10.1016/j.nbt.2017.07.012

    Article  CAS  PubMed  Google Scholar 

  22. Paz A, Costa-Trigo I, Tugores F (2019) Biotransformation of phenolic compounds by Bacillus aryabhattai. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-019-02163-0

    Article  PubMed  Google Scholar 

  23. Krieg NR, Smibert RA, Sikorski J, Tindall BJ (2007) Phenotypic characterization and the principles of comparative systematics. In: Methods for general and molecular microbiology 3rd edn. American Society of Microbiology, Washington D.C., p 330–393

    Google Scholar 

  24. Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249. https://doi.org/10.1016/0076-6879(88)61025-1

    Article  CAS  Google Scholar 

  25. Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250. https://doi.org/10.1016/0014-5793(84)80327-0

    Article  CAS  Google Scholar 

  26. Paz A, Carballo J, Pérez MJ, Domínguez JM (2016) Bacillus aryabhattai BA03: a novel approach to the production of natural value-added compounds. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-016-2113-5

    Article  PubMed  Google Scholar 

  27. Huang XF, Santhanam N, Badri DV (2013) Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol Bioeng 110:1616–1626. https://doi.org/10.1002/bit.24833

    Article  CAS  PubMed  Google Scholar 

  28. Chang YC, Choi DB, Takamizawa K, Kikuchi S (2014) Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresour Technol 152:429–436. https://doi.org/10.1016/j.biortech.2013.11.032

    Article  CAS  PubMed  Google Scholar 

  29. Liu W, Liu C, Liu L (2017) Simultaneous decolorization of sulfonated azo dyes and reduction of hexavalent chromium under high salt condition by a newly isolated salt-tolerant strain Bacillus circulans BWL1061. Ecotoxicol Environ Saf 141:9–16. https://doi.org/10.1016/j.ecoenv.2017.03.005

    Article  CAS  PubMed  Google Scholar 

  30. Ozer A, Uzuner U, Guler HI (2018) Improved pulp bleaching potential of Bacillus subtilis WB800 through overexpression of three lignolytic enzymes from various bacteria. Biotechnol Appl Biochem 65:560–571. https://doi.org/10.1002/bab.1637

    Article  CAS  PubMed  Google Scholar 

  31. Khelil O, Choubane S, Cheba BA (2015) Co-production of cellulases and manganese peroxidases by Bacillus sp. R2 and Bacillus Cereus 11778 on waste newspaper: application in dyes decolourization. Procedia Technol 19:980–987. https://doi.org/10.1016/j.protcy.2015.02.140

    Article  Google Scholar 

  32. Cupul WC, Abarca GH, Carrera DM, Vázquez RR (2014) Enhancement of ligninolytic enzyme activities in a Trametes maxima-Paecilomyces carneus co-culture: key factors revealed after screening using a Plackett-Burman experimental design. Electron J Biotechnol 17:114–121. https://doi.org/10.1016/j.ejbt.2014.04.007

    Article  CAS  Google Scholar 

  33. Logan NA, De Vos P (2009) Volume 3: the firmicutes. In: Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman W (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, p 1450

    Google Scholar 

  34. Abel-Santos E (2014) Endospores, sporulation and germination Molecular medical microbiology, 2nd edn. Elsevier Ltd, Amsterdam, p 163–178

    Google Scholar 

  35. Lazazzera BA (2000) Quorum sensing and starvation: signals for entry into stationary phase. Curr Opin Microbiol 3:177–182 https://doi.org/10.1016/S1369-5274(00)00072-2

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Jin K, Ghosh S (2014) Structural and functional snalysis of the GerD spore germination protein of Bacillus species. J Mol Biol 426:1995–2008. https://doi.org/10.1016/j.jmb.2014.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sen SK, Raut S, Bandyopadhyay P, Raut S (2016) Fungal decolouration and degradation of azo dyes: a review. Fungal Biol Rev 30 112 133 https://doi.org/10.1016/j.fbr.2016.06.003

    Article  Google Scholar 

  38. Zhang C, Diao H, Lu F (2012) Degradation of triphenylmethane dyes using a temperature and pH stable spore laccase from a novel strain of Bacillus vallismortis. Bioresour Technol 126:80–86. https://doi.org/10.1016/j.biortech.2012.09.055

    Article  CAS  PubMed  Google Scholar 

  39. Lu L, Zhao M, Li GF (2012) Decolorization of synthetic dyes by immobilized spore from Bacillus amyloliquefaciens. Catal Commun 26:58–62. https://doi.org/10.1016/j.catcom.2012.04.024

    Article  CAS  Google Scholar 

  40. Das R, Li G, Mai B, An T (2018) Spore cells from BPA degrading bacteria Bacillus sp. GZB displaying high laccase activity and stability for BPA degradation. Sci Total Environ 640–641:798–806

    Article  Google Scholar 

  41. yKoschorreck K, Richter SM, Ene AB (2008) Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microbiol Biotechnol 79:217–224. https://doi.org/10.1007/s00253-008-1417-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the Spanish Ministry of Economy and Competitiveness for the financial support given for this study (Project CTQ2015-71436-C2-1-R), which has partial financial support from the FEDER funds of the European Union, and to the “Consellería de Cultura, Educación e Ordenación Universitaria” of Xunta de Galicia for Alicia Pérez Paz’s postdoctoral fellowship ED481B 2018/073, and FAPESP (São Paulo Research Foundation) for the process n. 2018/25511-1. This study forms part of the activities of the Group with Potential for Growth (ED431B 2018/54-GPC), the Xunta de Galicia (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Domínguez.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paz, A., Costa-Trigo, I., Oliveira, R.P.S. et al. Ligninolytic Enzymes of Endospore-Forming Bacillus aryabhattai BA03. Curr Microbiol 77, 702–709 (2020). https://doi.org/10.1007/s00284-019-01856-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01856-9

Navigation