Skip to main content

Advertisement

Log in

Agonistic autoantibodies directed against G-protein-coupled receptors and their relationship to cardiovascular diseases

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Agonistic autoantibodies (AABs) against G-protein-coupled receptor (GPCR) are present mainly in diseases of the cardiovascular system or in diseases associated with cardiovascular disturbances. The increasing knowledge about the role of autoantibodies against G-protein-coupled receptor (GPCR-AABs) as pathogenic drivers, the resulting development of strategies aimed at their removal or neutralization, and the evidenced patient benefit associated with such therapies have created the need for a summary of GPCR-AAB-associated diseases. Here, we summarize the present knowledge about GPCR-AABs in cardiovascular diseases. The identity of the GPCR-AABs and their prevalence in each of several specific cardiovascular diseases are documented. The structure of GPCR is also briefly discussed. Using this information, differences between classic agonists and GPCR-AABs in their GPCR binding and activation are presented and the resulting pathogenic consequences are discussed. Furthermore, treatment strategies that are currently under study, most of which are aimed at the removal and in vivo neutralization of GPCR-AABs, are indicated and their patient benefits discussed. In this context, immunoadsorption using peptides/proteins or aptamers as binders are introduced. The use of peptides or aptamers for in vivo neutralization of GPCR-AABs is also described. Particular attention is given to the GPCR-AABs directed against the adrenergic beta1-, beta2-, and α1-receptor as well as the muscarinic receptor M2, angiotensin II-angiotensin receptor type I, endothelin1 receptor type A, angiotensin (1–7) Mas-receptor, and 5-hydroxytryptamine receptor 4. Among the diseases associated with GPCR-AABs, special focus is given to idiopathic dilated cardiomyopathy, Chagas’ cardiomyopathy, malignant and pulmonary hypertension, and kidney diseases. Relationships of GPCR-AABs are indicated to glaucoma, peripartum cardiomyopathy, myocarditis, pericarditis, preeclampsia, Alzheimer’s disease, Sjörgren’s syndrome, and metabolic syndrome after cancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wallukat G, Nissen E, Müller J, Brinckmann R, Schimke I, Kunze R (2002) The pathophysiological role of autoantibodies directed to G-protein coupled receptors and therapeutic strategies of antibody removal. In: Kunze R, Brinkmann R (eds) Affina academy: G-protein coupled receptors and autoantibodies, 7–47. Pabst Science Publishers, Lengerich, http://www.pabst-publishers.de/Medizin/buecher/3936142939.htm

    Google Scholar 

  2. Xia Y, Kellems RE (2011) Receptor-activating autoantibodies and disease: preeclampsia and beyond. Expert Rev Clin Immunol 7(5):659–674

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Patel PA, Hernandez AF (2013) Targeting anti-beta1-adrenergic receptor antibodies for dilated cardiomyopathy. Eur J Heart Fail 15:724–729

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Luft FC (2013) Activating autoantibodies and cardiovascular diseases. Physiology 28:254–261

    CAS  PubMed  Google Scholar 

  5. Sterin-Borda L, Cossio PM, Gimeno MF, Gimeno AL, Diez C, Laguens PP, Meckert PC, Arana RM (1976) Effect of chagasic sera on the rat isolated atrial preparation: immunological, morphological and functional aspects. Cardiovas Res 10:613–622

    CAS  Google Scholar 

  6. Borda E, Pascual J, Cossio P, De la Vega M, Arana R, Sterin-Borda L (1984) A circulating IgG in Chagas’ disease which binds to ß-adrenoceptors of myocardium and modulates their activity. Clin Exp Immunol 57:679–686

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Venter JC, Fraser CM, Harrison LC (1980) Autoantibodies to beta 2-adrenergic receptors: a possible cause of adrenergic hyporesponsiveness in allergic rhinitis and asthma. Science 207:1361–1363

    CAS  PubMed  Google Scholar 

  8. Wallukat G, Wollenberger A (1987) Effects of gamma globulin fraction of patients with allergic asthma and dilated cardiomyopathy on chronotropic beta adrenoceptor function in cultured neonatal rat heart myocytes. Biomed Biochim Acta 46:S634–S639

    CAS  PubMed  Google Scholar 

  9. Munoz-Saravia SG, Haberland A, Wallukat G, Schimke I (2012) Chronic Chagas’ heart disease—from pathogenesis to treatment regimes. Appl Cardiopulm Pathophysiol 16:55–81

    Google Scholar 

  10. Bywater RP (2005) Location and nature of the residues important for ligand recognition in G-protein coupled receptors. J Mol Recognit 18:60–72

    CAS  PubMed  Google Scholar 

  11. Unal H, Jagannathan R, Bhat MB, Karnik SS (2010) Ligand-specific conformation of extracellular loop-2 in the angiotensin II type 1 receptor. J Biol Chem 285:16341–16350

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Schimke I, Haberland A, Will-Shahab L, Küttner I, Papies B (1992) In vitro effects of reactive O2 species on the beta-receptor-adenylyl cyclase system. Mol Cell Biochem 110:41–46

    CAS  PubMed  Google Scholar 

  13. Limas CJ, Goldenberg IF, Limas C (1990) Influence of anti-beta receptor antibodies on cardiac adenylate cyclase in patients with idiopathic dilated cardiomyopathy. Am Heart J 119:1322–1328

    CAS  PubMed  Google Scholar 

  14. Jahns R, Boivin V, Lohse MJ (2006) Beta1-adrenergic receptor-directed autoimmunity as a cause of dilated cardiomyopathy in rats. Int J Cardiol 112:7–14

    PubMed  Google Scholar 

  15. Xia Y, Wen H, Bobst S, Day MC, Kellems RE (2003) Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human trophoblast cells. J Soc Gynecol Investig 10:82–93

    CAS  PubMed  Google Scholar 

  16. Wallukat G, Wolleberger A (1991) Autoantibodies to β2 adrenergic receptor with antiadrenergic activity from patients with allergic asthma. J Allergy Clin Immunol 88:581–587

    CAS  PubMed  Google Scholar 

  17. Mijares A, Lebesgue D, Argibay J, Hoebeke J (1996) Anti-peptide antibodies sensitive to the active state of the beta2 adrenergic receptor. FEBS Lett 399:188–191

    CAS  PubMed  Google Scholar 

  18. Elies R, Fu LXM, Eftekhari P, Wallukat G et al (1998) Immunochemical and functional characterization of an agonist-like monoclonal antibody against the M2 acetylcholine receptor. Eur J Biochem 251:659–666

    CAS  PubMed  Google Scholar 

  19. Mijares A, Lesbesgue D, Wallukat G, Hoebeke J (2000) From agonist to antagonist: Fab fragments of an agonist-like monoclonal anti-β(2)-adrenoceptor antibody behave as antagonist. Mol Pharmacol 58:373–379

    CAS  PubMed  Google Scholar 

  20. Hoebeke J (2001) Molecular mechanisms of anti-G-protein-coupled receptor autoantibody. Autoimmunity 34:161–164

    CAS  PubMed  Google Scholar 

  21. Hebert TE, Mofett S, Morello JP, Loisel TP, Bichet DG, Barret C, Bouvier MA (1996) Peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 271:16384–16392

    CAS  PubMed  Google Scholar 

  22. Limbird LE, Lefkowitz RJ (1978) Agonist-induced increase in apparent beta-adrenergic receptor size. Proc Natl Acad Sci U S A 75:228–232

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Elias F (2001) Detection of Trypanosoma cruzi DNA and analysis of the B cell in the heart tissue of patients with chronic Chagas’ heart disease. Dissertation, FU Berlin

  24. Staudt A, Eichler P, Trimpert C, Felic SB, Greinacher A (2007) Fc(gamma) receptor IIa on cardiomyocytes and their potential functional relevance in dilated cardiomyopathy. J Am Coll Cardiol 49:1684–1692

    CAS  PubMed  Google Scholar 

  25. Lukitsch I, Kehr J, Chaykovska L, Wallukat G, Nieminen-Kelhä M, Batuman V, Dragun D, Gollasch M (2012) Renal ischemia and transplantation predics pose to vascular constriction mediated by angiotensin II type 1 receptor-activating antibodies. Transplantation 94:8–13

    CAS  PubMed  Google Scholar 

  26. Wallukat G, Wollenberger A (1987) Involvement of β2-adrenergic receptors in the potentaion of the chronotropic action of isoprenaline evoked in rocker-cultured neonatal rat heart cells by pyruvate and L (+) lactate. In: Beamisch RE, Panagia V, Dhalla NS (eds) Parmacological aspects of heart disease. Martinius Nijhoff Publishing, Boston, pp 217–231

    Google Scholar 

  27. Jahns R, Boivin V, Krapf T, Wallukat G, Boege F, Lohse MJ (2000) Modulation of β1-adrenoceptor activity by domain-specific antibodies and heart-failure associated autoantibodies. J Am Coll Cardiol 36:280–1287

    Google Scholar 

  28. Krause EG, Bartel S, Beyerdörfer I, Wallukat G (1996) Activation of cyclic AMP-dependent protein kinase in cardiomyocytes by anti-beta 1-adrenoceptor autoantibodies from patients with idiopathic dilated cardiomyopathy. Blood Press Suppl 3:37–40

    CAS  PubMed  Google Scholar 

  29. Christ T, Wetwer E, Dobrew D, Adolph E, Knaut M, Wallukat G, Ravens U (2001) Autoantibodies against the beta1 adrenoceptor from patients with dilated cardiomyopathy prolong action potential duration and enhance contractility in isolated cardiomyocytes. J Mol Cell Cardiol 33:1280–1287

    Google Scholar 

  30. Wallukat G, Morwinski R, Kowal K, Förster A, Boewer V, Wollenberger A (1991) Autoantibodies against the β-adrenergic receptor in human myocarditis and dilated cardiomyopathy: ß-adrenergic agonism without desensitization. Eur Heart J 12)

  31. Wallukat G, Fu MLX, Magnusson Y, Hjalmarson Ǻ, Hoebeke J, Wollenberger A (1996) Agonistic effects of anti-peptide antibodies and autoantibodies against adrenergic and cholinergic receptors: absence of desensitisation. Blood Press 5:31–36

    Google Scholar 

  32. Wallukat G, Fu HM, Matsui S, Hjalmarson Å, Fu ML (1999) Autoantibodies against M2 muscarinic receptors in patients with cardiomyopathy display non-desensitizing agonist-like effects. Life Sci 64:465–469

    CAS  PubMed  Google Scholar 

  33. Podlowski S, Luther HP, Morwinski R, Müller J, Wallukat G (1998) Agonistic anti-β1-adrenergic receptor autoantibodies from cardiomyopathy patients reduce the β1-adrenergic receptor expression in neonatal cardiomyocytes. Circulation 98:2470–2476

    CAS  PubMed  Google Scholar 

  34. Staudt Y, Mobini R, Fu M, Felix SB, Kuhn JP, Staudt A (2003) Beta1-adrenoceptor antibodies induce apoptosis in adult isolated cardiomyocytes. Eur J Pharmacol 466:1–6

    CAS  PubMed  Google Scholar 

  35. Jane-wit D, Alfuntas CZ, Johnson JM, Yong S, Wickley PJ, Wang C, Popovic ZB, Damson DS, Perez DM, Tuohy VK (2007) Beta1-adrenergic receptor autoantibodies mediate dilated cardiomyopathy by agonistically inducing cardiomyocyte apoptosis. Circulation 116:399–410

    CAS  PubMed  Google Scholar 

  36. Haberland A, Wallukat G, Dahmen C, Kage A, Schimke I (2011) Aptamer neutralization of beta1-adrenoceptror autoantibodies isolated from patients with cardiomyopathies. Circ Res 109:986–992

    CAS  PubMed  Google Scholar 

  37. Okruhlikova L, Morwinski R, Schulze W, Bartel S, Weismann P, Tribulova N, Wallukat G (2007) Autoantibodies against G-protein coupled receptors modulate heart mast cells. Cell Mol Immunol 4:127–133

    Google Scholar 

  38. Matsui S, Fu MLX, Katsuda S, Hayase M, Yamaguchi N, Teraoka K, Kurikara T, Takaoshi N, Murakami E, Hoebeke J, Hjalmarson Å (1997) Peptides derived from cardiovascular G-protein-coupled receptors induce morphological cardiomyopathic changes in immunized rabbits. J Mol Cell Cardiol 29:641–655

    CAS  PubMed  Google Scholar 

  39. Matsui S, Persson N, Fu HM, Katsuda S, Hayase M, Teraoka K, Kurikara T, Fu ML (2000) Protective effect of bisoprolol on beta1-adrenoceptor peptide-induced myocardial damage in rabbits. Herz 25:267–270

    CAS  PubMed  Google Scholar 

  40. Jahns R, Boivin V, Hein L, Triebel S, Angermann CE, Ertl G, Lohse MJ (2004) Direct evidence for a beta1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest 113:1419–1429

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Jahns R, Boivin V, Lohse MJ (2006) Beta 1-adrenergic receptor-directed autoimmunity as a cause of dilated cardiomyopathy. Int J Cardiol 112:7–14

    PubMed  Google Scholar 

  42. Matsui S, Fu M, Hayase M, Katsuda S, Yamaguchi N, Teraoka K, Kurikara T, Takekoshi N (2003) Transfer of rabbit autoimmune cardiomyopathy into severe combined immunodeficiency mice. J Cardiovasc Pharmacol 42(Suppl 1):99–103

    Google Scholar 

  43. Omerovic E, Bollano E, Andersson B, Kujacic V, Schulze W, Hjalmarson Å, Waagstein F, Fu M (2000) Induction of cardiomyopathy in severe combined immunodeficiency mice by transfer of lymphocytes from patients with idiopathic dilated cardiomyopathy. Autoimmunity 32:271–280

    CAS  PubMed  Google Scholar 

  44. Jahns R, Lohse M (2010) β1-Adrenoceptor-Antikörper inhibierende, mutierte doppelt zyklisierte Rezeoptorpeptide. EP 2 197 900, 05.08.2010

  45. Sterin-Borda L, Joensen L, Bayo-Hanza C, Esteva M, Borda E (2002) Therapeutic use of muscarinic acetylcholin receptor peptide to prevent mice chagasic cardiac dysfunction. J Mol Cell Cardiol 34:1645–1654

    CAS  PubMed  Google Scholar 

  46. Dandel M, Wallukat G, Englert A, Lehmkuhl HB, Knosalla C, Hetzer R (2012) Long-term benefits of immunoadsorption in β(1)-adrenoceptor autoantibody-positive transplant candidates with dilated cardiomyopathy. Eur J Heart Fail 14:1374–1388

    CAS  PubMed  Google Scholar 

  47. Dandel M, Wallukat G, Englert A, Hetzer R (2013) Immunoadsorption therapy for dilated cardiomyopathy and pulmonary arterial hypertension. Atherosclerosis 14(Suppl 1):203–211

    CAS  PubMed  Google Scholar 

  48. Wallukat G, Reinke P, Dörffel WV, Luther HP, Bestvater K, Felix SB, Baumann G (1996) Removal of autoantibodies in dilated cardiomyopathy by immunoadsorption. Int J Cardiol 54:191–195

    CAS  PubMed  Google Scholar 

  49. Dörffel WV, Felix SB, Wallukat G, Brehme S, Bestvater K, Hofmann T, Kleber FX, Baumann G, Reinke P (1997) Short-terme hemodynamic effects of immunoadsorption in dilated cardiomyopathy. Circulation 95:1994–1997

    PubMed  Google Scholar 

  50. Baba A, Akaishi M, Shimada M, Monkawa T et al (2010) Complete elimination of cardiodepressant IgG3 autoantibodies by Immunoadsorption in patients with severe heart failure. Circ J 74:1372–1378

    CAS  PubMed  Google Scholar 

  51. Herda LR, Trimpert C, Nauke U, Landsberger M, Hummel A, Beug D, Kieback A, Dörr M, Empen K, Knebel F, Ewert R, Angelow A, Hoffmann W, Felix SB, Staudt A (2010) Effects of immunoadsorption and subsequent immunoglobulin G substitutin on cardiopulmonary exercise capacity in patients with dilate cardiomyopathy. Am Heart J 159:809–816

    CAS  PubMed  Google Scholar 

  52. Pokrowsky SN, Ezhov MV, Safarova MS, Saidova MA, Shitov VN, Afanasieva MI, Khaustov AI, Adamova IY, Afanasieva OI, Konovalov GA (2013) Ig apheresis for the treatment of severe DCM patients. Atherosclerosis 14(Suppl 1):213–218

    Google Scholar 

  53. Müller J, Wallukat G, Dandel M, Bieda H, Brandes K, Spiegelsberger S, Nissen E, Kunze R, Hetzer R (2000) Immunoglobulin adsorption in patients with dilated cardiomyopathy. Circulation 101:385–391

    PubMed  Google Scholar 

  54. Schimke I, Müller J, Priem F, Kruse I, Schön B, Stein J, Kunze R, Wallukat G, Hetzer R (2001) Decreased oxidative stress in patients with idiopathic dilated cardiomyopathy one year after immunoglobulin adsorption. J Am Coll Cardiol 38:178–183

    CAS  PubMed  Google Scholar 

  55. Schimke I, Müller J, Dandel M, Gremmels HD, Bayer W, Wallukat B, Wallukat G, Hetzer R (2005) Reduced oxidative stress in parallel to improved cardiac performance one year after selective removal of anti-beta 1-adrenoreceptor autoantibodies in patients with idiopathic dilated cardiomyopathy: data of a preliminary study. J Clin Apher 20:137–142

    PubMed  Google Scholar 

  56. Hessel FP, Wegner C, Müller J, Glaveris C, Wasem J (2004) Economic evaluation and survival analysis of immunoglobulin adsorption in patients with idiopathic dilated cardiomyopathy. Eur J Health Econ 5:58–63

    PubMed  Google Scholar 

  57. Dörffel WV, Wallukat G, Dörffel Y, Felix SB, Baumann G (2004) Immunoadsorption in dilated cardiomyopathy, a 3 year follow-up. Int J Cardiol 97:529–534

    PubMed  Google Scholar 

  58. Trimpert C, Herda LR, Eckele LG, Pohle S, Müller C, Landsberger M, Felix SB, Staudt A (2010) Immunadsorption in dilated cardiomyopathy: long-term reduction of cardiodepressant antibodies. Eur J Clin Invest 40:685–691

    CAS  PubMed  Google Scholar 

  59. Knebel F, Böhm M, Staudt A, Borges AC, Tepper M, Jochmann N, Wernecke KD, Felix S, Baumann G (2004) Reduction of morbidity by immunoadsorption therapy in patients with dilated cardiomyopathy. Int J Cardiol 97:517–520

    PubMed  Google Scholar 

  60. Wallukat G, Müller J, Hetzer R (2002) Specific removal of beta1-adrenergic autoantibodies from patients with idiopathic dilated cardiomyopathy. N Engl J Med 347:1806

    PubMed  Google Scholar 

  61. Labovsky V, Smulski CR, Gómez K, Levy G, Levin MJ (2007) Anti-beta1-adrenergic receptor autoantibodies in patients with chronic Chagas heart disease. Clin Exp Immunol 148:440–449

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Wallukat G, Haberland A, Schimke I (2013) Letter to the editor: a vision of future treatment in Chagas’ heart disease. J Am Coll Cardiol. doi:10.1016/j.jacc.2013.08.1660

    PubMed  Google Scholar 

  63. Wallukat G, Munoz-Saravia SG, Haberland A, Bartel S, Araujo R, Valda G, Duchen D, Ramirez ID, Borges AC, Schimke I (2010) Distinct pattern of autoantibodies against G-protein coupled receptors in Chagas’ cardiomyopathy and megacolon. J Am Coll Cardiol 55:463–468

    CAS  PubMed  Google Scholar 

  64. Wallukat G, Dandel M, Müller J et al (2008) Agonistic autoantibodies against the endothelin 1 ETA and α1-adrenergic receptor in sera of patients with idiopathic pulmonary arterial hypertension. Circulation 108(Supp 2):S1072

    Google Scholar 

  65. Dandel M, Wallukat G, Englert A, Lehmkuhl H, Hetzer R (2009) Functional autoantibodies against G-protein coupled receptors in sera of patients with pulmonary arterial hypertension: potential involvement in the pathogenesis of the disease. J Am Coll Cardiol 53 (Suppl A454)

  66. Wenzel K, Haase H, Wallukat G, Derer W, Bartel S, Hohmuth V, Herse F, Hubner N, Schulz H, Janczikowski M, Lindschau C, Schroeder C, Verlohren S, Morano I, Muller DN, Luft FC, Dietz R, Dechend R, Karczewski P (2008) Potential relevance of α1-adrenergic receptor autoantibodies in refractory hypertension. PLoS One 3(11):e3742

    PubMed Central  PubMed  Google Scholar 

  67. Jünnemann AGM, Kunze R, Bellios N, Wallukat G, Herrmann M, Rech J (2011) Stimulatory autoantibodies against beta2-adrenergic receptors in open-angle glaucoma IV: effect of immunoadsorption on antibody level and intraocular pressure. Eur J Ophthalmol. doi:10.5301/ejo.2011.7835

    Google Scholar 

  68. Doesch AO, Mueller S, Konstandin M, Celik S, Kristen A, Frankenstein L, Goeser S, Kaya Z, Zugck C, Dengler TJ, Katus HA (2010) Effects of protein A immunoadsorption in patients with chronic dilated cardiomyopathy. J Clin Apher 25:315–322

    PubMed  Google Scholar 

  69. Nagatomo Y, Baba A, Ito H, Naito K, Yoshizawa A, Kurita Y, Nakamura I, Monkawa T, Matsubara T, Wakabayashi Y, Ogawa S, Akaishi M, Yoshikawa T (2011) Specific immunoadsorption therapy using a tryptophan column in patients with refractory heart failure due to dilated cardiomyopathy. J Clin Apher 26:1–8

    PubMed  Google Scholar 

  70. Haberland A, Wallukat G, Schimke I (2011) Aptamer binding and neutralization of β1-adrenoceptore autoantibodies: basics and a vision of its future in cardiomyopathy treatment. Trends Cardiovasc Med 21:177–182

    CAS  PubMed  Google Scholar 

  71. Marquis JK, Grindel JM (2000) Toxicological evaluation of oligonucleotide therapeutics. Curr Opin Mol Ther 2:258–263

    CAS  PubMed  Google Scholar 

  72. Dahmen C, Haberland A, Kage A, Schimke I, Wallukat G (2011) Aptamers that inhibit interaction between antibody and 2nd extracellular loop of human beta-1-adrenergic receptor. PCT/EP2011/060572, WO2012000889 A1

  73. Schimke I, Haberland A, Wallukat G (2012) Use of aptamers in therapy and/or diagnosis of autoimmune diseases. EP2497828A1, WO2012119938A2

  74. Wallukat G, Haberland A, Berg S, Schulz A, Freyse EJ, Dahmen C, Kage A, Dandel M, Vetter R, Salzsieder E, Kreutz R, Schimke I (2012) The first Aptamer-apheresis column specifically for clearing blood of β1-receptor autoantibodies. Circ J 76:2449–2455

    CAS  PubMed  Google Scholar 

  75. Münch G, Boivin-Jahns V, Holthoff HP, Adler K, Lappo M, Truöl S, Degen H, Steiger N, Lohse MJ, Jahns R, Ungerer M (2012) Administration of the cylclic peptide COR-1 in humans (phaseI study): ex vivo measurements of anti-β1-adrenergic receptor antibody neutralization and immune parameters. Eur J Heart Fail 14:1230–1239

    PubMed  Google Scholar 

  76. Nikolaev VO, Boivin V, Störk S, Angermann CE, Ertl G, Lohse MJ, Jahns R (2007) A novel fluorescence method for the rapid detection of functional beta1-adrenergic receptor autoantibodies in heart failure. J Am Coll Cardiol 50:423–431

    CAS  PubMed  Google Scholar 

  77. Matsui S, Fu ML, Shimizu M, Fukuoka T, Teraoka K, Takekoshi N, Murakami E, Hjalmarson A (1995) Dilated cardiomyopathy defines serum autoantibodies against G-protein coupled cardiovascular receptors. Autoimmunity 21:85–88

    CAS  PubMed  Google Scholar 

  78. Jahns R, Boivin V, Siegmund C, Inselmann G, Lohse MJ, Boege F (1999) Autoantibodies activating human β1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure. Circulation 99:649–654

    CAS  PubMed  Google Scholar 

  79. Holthoff HP, Zeisig S, Jahns-Boivin V, Bauer J, Lohse MJ, Kääb S, Clauss S, Jahns R, Schlipp A, Münch G, Ungerer M (2012) Detection of anti β1-AR autoantibodies in heart failure by a cell-based competition ELISA. Circ Res 111:675–684

    CAS  PubMed  Google Scholar 

  80. Wallukat G, Wollenberger A, Morwinski R, Pitschner HF (1995) Anti-β1-adrenoceptor autoantibodies with chronotropic activity from the serum of patients with dilated cardiomyopathy: mapping of epitopes in the first and second extracellular loops. J Mol Cell Cardiol 27:397–406

    CAS  PubMed  Google Scholar 

  81. Förster OAEM (2007) Peripartum cardiomyopathy—an autoimmune disease. Thesis, Faculty of Health Sciences, Univ Witwatersrand, Johannesburg

    Google Scholar 

  82. Chiale PA, Rosenbaum MB, Elizari MV, Hjalmarson Å, Magnusson Y, Wallukat G, Hoebeke J (1995) High prevalence of antibodies against beta1- and beta2-adrenoceptors in patients with primary electrical abnormalities. J Am Coll Cardiol 26:864–869

    CAS  PubMed  Google Scholar 

  83. Brisinda D, Sorbo AR, Venuti A, Ruggieri MP, Manna R, Fenici P, Wallukat G, Hoebeke J, Frustaci A, Fenici R (2012) Anti-β-adrenoceptor autoimmunity causing idiopathic arrhythmias and cardiomyopathy. Circ J 76:1345–1353

    CAS  PubMed  Google Scholar 

  84. Iwata M, Yoshikawa T, Baba A, Anzai T, Mitamura H, Ogawa S (2001) Autoantibodies against the second extracellular loop of the β1-adrenergic receptor predict ventricular tachycardia and sudden death in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 37:418–424

    CAS  PubMed  Google Scholar 

  85. Segovia M, Ganzinelli S, Reina E, Borda E, Sterin-Borda L (2012) Role of anti-β1 adrenergic antibodies from patients with periodontitis in cardiac dysfunction. J Oral Pathol Med 41(3):242–248

    CAS  PubMed  Google Scholar 

  86. Reina S, Ganzinelli S, Sterin-Borda L, Borda E (2012) Pro-apoptotic effect af anti-β1-adrenergic receptor antibodies in periodontitis patients. Int Immunopharmacol 14:710–721

    CAS  PubMed  Google Scholar 

  87. Sterin- Borda L, Perez LC, Wald M, Cremaschi G, Borda E (1988) Antibodies to beta1 and beta2 adrenoceptors in Chagas’ disease. Clin Exp Immunol 74:349–354

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Goin JC, Borda E, Leiros CP, Storino R, Sterin-Borda (1994) Identification of antibodies with muscarinic cholinergic activity in human Chagas’ disease. J Auton Nerv Syst 47:45–52

    CAS  PubMed  Google Scholar 

  89. Borda E, Sterin-Borda L (1996) Antiadrenergic and muscarinic receptor antibodies in Chagas cardiomyopathy. Int J Cardiol 56:149–156

    Google Scholar 

  90. Muñoz Saravia SG, Haberland A, Bartel S, Araujo R, Valda G, Duchen D, Diaz Ramirez I, Borges AC, Wallukat G, Schimke I (2010) Distinct patterns of autoantibodies against G-protein-coupled receptors in Chagas’ cardiomyopathy and megacolon: their potential impact for early risk assessment in asymptomatic Chagas’ patients. J Am Coll Cardiol 56(6):526–527

    PubMed  Google Scholar 

  91. Kunze R, Wallukat G, Rosenthal P, Straube R (2009) Peptides have binding affinities to an antibody which recognize an epitope on an α1-loop2 and β2-loop1 of an adrenoceptor. WO/2009/090227, EP 2244718-AZ

  92. Karczewski P, Hempel P, Kunze R, Bimmler M (2012) Agonistic autoantibodies to the α1-adrenergic and the β2-adrenergic receptor in Alzheimer’s and vascular dementia. Scand J Immunol 75:524–530

    CAS  PubMed  Google Scholar 

  93. Kohr D, Singh P, Tschernatsch M, Kaps M et al (2011) Autoimmunity against the β2 adrenergic receptor and muscarinic M2 receptor in complex regional pain syndrome. Pain 152:2690–2700

    CAS  PubMed  Google Scholar 

  94. Fu ML, Herlitz H, Wallukat G, Hilme E, Hedner T, Hoebeke J et al (1994) Functional autoimmune epitope on alpha1-adrenergic receptors in patients with malignant hypertension. Lancet 344:1660–1663

    CAS  PubMed  Google Scholar 

  95. Luther HP, Homuth V, Wallukat G (1997) Alpha1-adrenergic receptor antibodies in patients with primary hypertension. Hypertension 29:678–682

    CAS  PubMed  Google Scholar 

  96. Hempel P, Karczewski P, Kohnert J et al (2009) Sera of patients with type2 diabetes contain agonistic autoantibodies against G-protein coupled receptors. Scand J Immunol 70:159–160

    CAS  PubMed  Google Scholar 

  97. Karczewski P, Haase H, Hempel P, Bimmler M (2010) Agonistic antibody to the alpha1-adrenergic receptor mobilizes intracellular calcium and induces phosphorylation of a cardiac 15-kDa protein. Mol Cell Biol 333:233–242

    CAS  Google Scholar 

  98. Karczewski P, Pohlmann A, Wagenhaus B, Wisbrun N, Hempel P, Lemke B, Kunze R, Niendorf T, Bimmler M (2012) Antibodies to the α1-adrenergic receptor cause vascular impairments in the rat brain as demonstrated by magnetic resonanze angiography. PLoS One 7(7):e 41602

    CAS  Google Scholar 

  99. Haberland A, Santos RAS, Schimke I, Wallukat G (2013) Are agonistic autoantibodies against G-protein coupled receptors involved in the development of long-term side effects of tumor chemotherapy? Case Rep Oncol 6:104–108

    PubMed Central  PubMed  Google Scholar 

  100. Wallukat G, Homuth V, Fischer T, Lindschau C, Horstkamp B, Jüpner A, Baur E, Nissen E, Vetter K, Neichel D, Dudenhausen JW, Haller H, Luft FC (1999) Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest 103:945–952

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Dechend R, Homuth V, Wallukat G, Kreuzer J, Park JK, Theuer J, Juepner A, Gulba DC, Mackman N, Haller H, Luft FC (2000) AT(1) receptor agonistic antibodies from preeclamptic patients cause vascular cells to express tissue factor. Circulation 101:2382–2387

    CAS  PubMed  Google Scholar 

  102. Dechend R, Viedt C, Müller DN, Ugele B, Brandes RP, Wallukat G, Park JK, Janke J, Barta P, Theuer J, Fiebeler A, Homuth V, Dietz R, Haller H, Kreuzer J, Luft FC (2003) AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation 107:1632–1639

    CAS  PubMed  Google Scholar 

  103. Bobst SM, Day MC, Gilstrap LC, Xia Y, Kellems RE (2005) Maternal autoantibodies from preeclamptic patients activate angiotensin receptor on human mesangial cells and induce interleukin-6 and plasminogen activator inhibitor-I secretion. Am J Hypertens 18:330–336

    CAS  PubMed  Google Scholar 

  104. Dörffel Y, Wallukat G, Bochnig N, Homuth V, Herberg M, Dörffel W, Pruss A, Chaoui R, Scholze J (2003) Agonistic AT1 receptor autoantibodies and monocyte stimulation in hypertensive patients. Am J Hypertens 16:827–833

    PubMed  Google Scholar 

  105. Fu MLX, Herlitz H, Schulze W, Wallukat G, Micke P, Eftekhari P, Sjögren KG, Hjalmarson Å, Müller-Esterl W, Hoebeke J (2000) Autoantibodies against the angiotensin receptor (AT1) in patients with hypertension. J Hypertens 18:945–953

    CAS  PubMed  Google Scholar 

  106. Dragun D, Müller DM, Bräsen JH, Fritsche L, Nieminen-Kelhä M, Dechend R, Kintscher U, Rudolph B, Hoebeke J, Eckert D, Mazak I, Plehm R, Schönemann C, Unger T, Budde K, Neumayer HH, Luft FC, Wallukat G (2005) Angiotensin II type receptor activating antibodies in renal-allograft rejection. N Engl J Med 352:558–569

    CAS  PubMed  Google Scholar 

  107. Fu ML (1996) Anti-M2 muscarinic receptor autoantibodies and idiopathic dilated cardiomyopathy. Int J Cardiol 54:127–135

    CAS  PubMed  Google Scholar 

  108. Wallukat G, Nissen E, Morwinski R, Müller J (2000) Autoantibodies against the beta-and muscarinic receptors in cardiomyopathy. Herz 25:261–266

    CAS  PubMed  Google Scholar 

  109. Goin JC, Leiros CP, Borda E, Sterin-Borda (1997) Interaction of human chagasic IgG with the second extracellular loop of the human muscarinic acetylcholine receptor: functional and pathological implication. FASEB J 11:77–83

    CAS  PubMed  Google Scholar 

  110. Koo NY, Hwang SM, Choi SY, Kim B, Kho HS, Choi SY, Song YW, Park K (2008) Functional epitope of muscarinic type 3 receptor which interact with autoantibodies from Sjörgren’s syndrome patients. Rheumatology 47:828–833

    CAS  PubMed  Google Scholar 

  111. Jin M, Hwang SM, Koo NY, Kim B, Kho HS, Choi SY, Song YW, Park K (2012) Autoantibodies in Sjörgren’s syndrome patients acutely inhibit muscarinic receptor function. Oral Dis 18:132–139

    CAS  PubMed  Google Scholar 

  112. Lee BH, Gauna AE, Perez G, Park YJ, Pauley KM, Kawai T, Cha S (2013) Autoantibodies against muscarinic type 3 receptor in Sjörgren’s syndrome inhibit aquaporin 5 trafficking. PLoS One 8(1):e53113

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Berg CP, Blume K, Lauber K, Gregor M, Berg PA, Wesselborg S, Stein GM (2010) Antibodies to muscarinic acetylcholine receptors found in patients with primary billary cirrhosis. BMC Gastroenterol 10:120

    PubMed Central  PubMed  Google Scholar 

  114. Li H, Kem DC, Reim S, Khan M, Vanderlinde-Wood M, Zillner C, Collier D, Liles C, Hill MA, Cunningham MW, Aston CE, Yu X (2012) Agonistic autoantibodies as vasodilators in orthostatic hypotension: a new mechanism. Hypertension 59(2):402–408

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Lombardi MG, Nergroni MP, Pelegrina LT, Castro ME, Fiszman GL, Azar ME, Morgado CC, Sales ME (2013) Autoantibodies against muscarinic receptors in breast cancer: their role in tumor angiogenesis. PLoS One 8(2):e57572

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Negroni MP, Fiszman GL, Azar ME, Morgado CC, Español AJ, Pelegrina LT, de la Torre E, Sales ME (2010) Immunoglobulin G from breast cancer patients in stage I stimulates muscarinic acetylcholine receptor in MCF7 cells and induces proliferation. Participation of nitric oxide synthase-derived nitric oxide. J Clin Immunol 30:474–484

    CAS  PubMed  Google Scholar 

  117. Fiszman G, Cattaneo V, de la Torre E, Español A, Colombo L, Sacerdote de Lustig E, Sales ME (2006) Muscarinic receptors autoantibodies purified from mammary adenocarcinoma-bearing mice sera stimulate tumor progression. Int Immunopharmacol 6:1323–1330

    CAS  PubMed  Google Scholar 

  118. Riemekasten G, Phillippe A, Näther M, Slowinski T, Müller DN, Heidecke H, Matucci-Cerinic M, Czirják L, Lukitsch I, Becker M, Kill A, van Laar JM, Catar R, Luft FC, Burmester GR, Hegner B, Dragun D (2011) Involvement of functional autoantibodies against vascular receptors in systemic sclerosis. Ann Rheum Dis 70:530–536

    CAS  PubMed  Google Scholar 

  119. Eftekhari P, Salle L, Lezoualc’h F, Mialet J, Gastineau M, Briand JP, Isenberg DA, Fournié GJ, Argibay J, Fischmeister R, Muller S, Hoebeke J (2000) Anti SSA/Ro52 autoantibodies blocking the cardiac 5HT4 serotoninergic receptor could explain neonatal lupus congenital heart block. Eur J Immunol 30:2782–2790

    CAS  PubMed  Google Scholar 

  120. Kamel R, Eftekhari P, Clancy R, Buyon JP, Hoebeke J (2005) Autoantibodies against the serotoninergic 5HT4 receptor and congenital heart block. J Autoimmun 25:72–76

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Wallukat.

Additional information

This article is a contribution to the special issue on B cell-mediated autoimmune diseases - Guest Editors: Thomas Winkler and Reinhard Voll

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallukat, G., Schimke, I. Agonistic autoantibodies directed against G-protein-coupled receptors and their relationship to cardiovascular diseases. Semin Immunopathol 36, 351–363 (2014). https://doi.org/10.1007/s00281-014-0425-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0425-9

Keywords

Navigation