Skip to main content

Advertisement

Log in

Triptolide augments the effects of 5-lipoxygenase RNA interference in suppressing pancreatic tumor growth in a xenograft mouse model

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Pancreatic cancer has one of the highest fatality rates of all cancers, and new strategies or reagents to tackle this disease are needed. Triptolide (TL) is able to potently inhibit the growth of pancreatic tumor cells in vitro. On the other hand, blockage of 5-LOX pathway might be useful for treatment of pancreatic cancer. In the current study, we tested the effects of 5-LOX RNA interference and TL individually or in combination in suppressing human pancreatic tumor growth in xenograft mouse model.

Methods

5-LOX short hairpin RNA (shRNA) vectors were developed and screened out for their efficacy in human pancreatic cancer cell line SW1990 in vitro. Their antitumor effects were also evaluated by measuring cell proliferation and apoptosis. An effective 5-LOX shRNA was given alone or in combination with TL to treat pancreatic tumor xenograft. Expression levels of 5-LOX and VEGF were measured with Western blotting and immunohistology.

Results

Knocking down 5-LOX gene suppressed cancer cell growth in vitro and intra-tumoral delivering of 5-LOX shRNA inhibited growth of transplanted tumor in vivo. TL treatment induced tumor suppression and greatly enhanced antitumor effects of 5-LOX shRNA in the mouse model. 5-LOX RNA interference or TL treatment suppresses VEGF expression in tumor tissue, and combined treatment further reduces its expression.

Conclusions

Both treatments exerted antitumor effects in vivo, and combined use of the two approaches produced more powerful antitumor effects. Synergistic effects of combined treatment in VEGF expression may contribute to the mechanisms of the strong antitumor effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362:1605–1617

    Article  PubMed  CAS  Google Scholar 

  2. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  3. Maitra A, Hruban RH (2008) Pancreatic cancer. Annu Rev Pathol 3:157–188

    Article  PubMed  CAS  Google Scholar 

  4. Wong HH, Lemoine NR (2009) Pancreatic cancer: molecular pathogenesis and new therapeutic targets. Nat Rev Gastroenterol Hepatol 6:412–422

    Article  PubMed  CAS  Google Scholar 

  5. Zhou GX, Ding XL, Huang JF, Zhang H, Wu SB, Cheng JP, Wei Q (2008) Apoptosis of human pancreatic cancer cells induced by triptolide. World J Gastroenterol 14:1504–1509

    Article  PubMed  CAS  Google Scholar 

  6. Zhou ZL, Luo ZG, Yu B, Jiang Y, Chen Y, Feng JM, Dai M, Tong LJ, Li Z, Li YC, Ding J, Miao ZH (2010) Increased accumulation of hypoxia-inducible factor-1alpha with reduced transcriptional activity mediates the antitumor effect of triptolide. Mol Cancer 9:268

    Article  PubMed  Google Scholar 

  7. Mujumdar N, Mackenzie TN, Dudeja V, Chugh R, Antonoff MB, Borja-Cacho D, Sangwan V, Dawra R, Vickers SM, Saluja AK (2010) Triptolide induces cell death in pancreatic cancer cells by apoptotic and autophagic pathways. Gastroenterology 139:598–608

    Article  PubMed  CAS  Google Scholar 

  8. Yang S, Chen J, Guo Z, Xu XM, Wang L, Pei XF, Yang J, Underhill CB, Zhang L (2003) Triptolide inhibits the growth and metastasis of solid tumors. Mol Cancer Ther 2:65–72

    PubMed  CAS  Google Scholar 

  9. Carter BZ, Mak DH, Schober WD, Dietrich MF, Pinilla C, Vassilev LT, Reed JC, Andreeff M (2008) Triptolide sensitizes AML cells to TRAIL-induced apoptosis via decrease of XIAP and p53-mediated increase of DR5. Blood 111:3742–3750

    Article  PubMed  CAS  Google Scholar 

  10. Chang WT, Kang JJ, Lee KY, Wei K, Anderson E, Gotmare S, Ross JA, Rosen GD (2001) Triptolide and chemotherapy cooperate in tumor cell apoptosis. A role for the p53 pathway. J Biol Chem 276:2221–2227

    PubMed  CAS  Google Scholar 

  11. Comba A, Pasqualini ME (2009) Primers on molecular pathways—lipoxygenases: their role as an oncogenic pathway in pancreatic cancer. Pancreatology 9:724–728

    Article  PubMed  CAS  Google Scholar 

  12. Tong WG, Ding XZ, Talamonti MS, Bell RH, Adrian TE (2007) Leukotriene B4 receptor antagonist LY293111 induces S-phase cell cycle arrest and apoptosis in human pancreatic cancer cells. Anticancer Drugs 18:535–541

    Article  PubMed  CAS  Google Scholar 

  13. Pidgeon GP, Lysaght J, Krishnamoorthy S, Reynolds JV, O’Byrne K, Nie D, Honn KV (2007) Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metast Rev 26:503–524

    Article  CAS  Google Scholar 

  14. Hennig R, Ding XZ, Tong WG, Schneider MB, Standop J, Friess H, Buchler MW, Pour PM, Adrian TE (2002) 5-Lipoxygenase and leukotriene B(4) receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue. Am J Pathol 161:421–428

    Article  PubMed  CAS  Google Scholar 

  15. Hennig R, Grippo P, Ding XZ, Rao SM, Buchler MW, Friess H, Talamonti MS, Bell RH, Adrian TE (2005) 5-Lipoxygenase, a marker for early pancreatic intraepithelial neoplastic lesions. Cancer Res 65:6011–6016

    Article  PubMed  CAS  Google Scholar 

  16. Mao YP, Tao XL, Lipsky PE (2000) Analysis of the stability and degradation products of triptolide. J Pharm Pharmacol 52:3–12

    Article  PubMed  CAS  Google Scholar 

  17. Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461

    Article  PubMed  CAS  Google Scholar 

  18. Cuendet M, Pezzuto JM (2000) The role of cyclooxygenase and lipoxygenase in cancer chemoprevention. Drug Metabol Drug Interact 17:109–157

    Article  PubMed  CAS  Google Scholar 

  19. Tucker ON, Dannenberg AJ, Yang EK, Zhang F, Teng L, Daly JM, Soslow RA, Masferrer JL, Woerner BM, Koki AT, Fahey TJ 3rd (1999) Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res 59:987–990

    PubMed  CAS  Google Scholar 

  20. Grosch S, Tegeder I, Niederberger E, Brautigam L, Geisslinger G (2001) COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J 15:2742–2744

    PubMed  CAS  Google Scholar 

  21. Patel MI, Subbaramaiah K, Du B, Chang M, Yang P, Newman RA, Cordon-Cardo C, Thaler HT, Dannenberg AJ (2005) Celecoxib inhibits prostate cancer growth: evidence of a cyclooxygenase-2-independent mechanism. Clin Cancer Res 11:1999–2007

    Article  PubMed  CAS  Google Scholar 

  22. Dhawan D, Jeffreys AB, Zheng R, Stewart JC, Knapp DW (2008) Cyclooxygenase-2 dependent and independent antitumor effects induced by celecoxib in urinary bladder cancer cells. Mol Cancer Ther 7:897–904

    Article  PubMed  CAS  Google Scholar 

  23. Jimeno A, Amador ML, Kulesza P, Wang X, Rubio-Viqueira B, Zhang X, Chan A, Wheelhouse J, Kuramochi H, Tanaka K, Danenberg K, Messersmith WA, Almuete V, Hruban RH, Maitra A, Yeo CJ, Hidalgo M (2006) Assessment of celecoxib pharmacodynamics in pancreatic cancer. Mol Cancer Ther 5:3240–3247

    Article  PubMed  CAS  Google Scholar 

  24. Melstrom LG, Bentrem DJ, Salabat MR, Kennedy TJ, Ding XZ, Strouch M, Rao SM, Witt RC, Ternent CA, Talamonti MS, Bell RH, Adrian TA (2008) Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clin Cancer Res 14:6525–6530

    Article  PubMed  CAS  Google Scholar 

  25. Matsuyama M, Yoshimura R, Mitsuhashi M, Tsuchida K, Takemoto Y, Kawahito Y, Sano H, Nakatani T (2005) 5-Lipoxygenase inhibitors attenuate growth of human renal cell carcinoma and induce apoptosis through arachidonic acid pathway. Oncol Rep 14:73–79

    PubMed  CAS  Google Scholar 

  26. Yoshimura R, Matsuyama M, Tsuchida K, Kawahito Y, Sano H, Nakatani T (2003) Expression of lipoxygenase in human bladder carcinoma and growth inhibition by its inhibitors. J Urol 170:1994–1999

    Article  PubMed  CAS  Google Scholar 

  27. Furstenberger G, Krieg P, Muller-Decker K, Habenicht AJ (2006) What are cyclooxygenases and lipoxygenases doing in the driver’s seat of carcinogenesis? Int J Cancer 119:2247–2254

    Article  PubMed  CAS  Google Scholar 

  28. Fischer AS, Metzner J, Steinbrink SD, Ulrich S, Angioni C, Geisslinger G, Steinhilber D, Maier TJ (2010) 5-Lipoxygenase inhibitors induce potent anti-proliferative and cytotoxic effects in human tumour cells independently of suppression of 5-lipoxygenase activity. Br J Pharmacol 161:936–949

    Article  PubMed  CAS  Google Scholar 

  29. Page P, Yang LX (2010) Novel chemoradiosensitizers for cancer therapy. Anticancer Res 30:3675–3682

    PubMed  CAS  Google Scholar 

  30. Lev-Ari S, Strier L, Kazanov D, Madar-Shapiro L, Dvory-Sobol H, Pinchuk I, Marian B, Lichtenberg D, Arber N (2005) Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clin Cancer Res 11:6738–6744

    Article  PubMed  CAS  Google Scholar 

  31. Wang W, Yang S, Su Y, Xiao Z, Wang C, Li X, Lin L, Fenton BM, Paoni SF, Ding I, Keng P, Okunieff P, Zhang L (2007) Enhanced antitumor effect of combined triptolide and ionizing radiation. Clin Cancer Res 13:4891–4899

    Article  PubMed  CAS  Google Scholar 

  32. Fidler JM, Li K, Chung C, Wei K, Ross JA, Gao M, Rosen GD (2003) PG490–88, a derivative of triptolide, causes tumor regression and sensitizes tumors to chemotherapy. Mol Cancer Ther 2:855–862

    PubMed  CAS  Google Scholar 

  33. Zhou GX, Ding XL, Huang JF, Zhang H, Wu SB (2007) Suppression of 5-lipoxygenase gene is involved in triptolide-induced apoptosis in pancreatic tumor cell lines. Biochim Biophys Acta 1770:1021–1027

    Article  PubMed  CAS  Google Scholar 

  34. He MF, Huang YH, Wu LW, Ge W, Shaw PC, But PP (2010) Triptolide functions as a potent angiogenesis inhibitor. Int J Cancer 126:266–278

    Article  PubMed  CAS  Google Scholar 

  35. Shamon LA, Pezzuto JM, Graves JM, Mehta RR, Wangcharoentrakul S, Sangsuwan R, Chaichana S, Tuchinda P, Cleason P, Reutrakul V (1997) Evaluation of the mutagenic, cytotoxic, and antitumor potential of triptolide, a highly oxygenated diterpene isolated from Tripterygium wilfordii. Cancer Lett 112:113–117

    Article  PubMed  Google Scholar 

  36. Kitzen JJ, de Jonge MJ, Lamers CH, Eskens FA, van der Biessen D, van Doorn L, Ter Steeg J, Brandely M, Puozzo C, Verweij J (2009) Phase I dose-escalation study of F60008, a novel apoptosis inducer, in patients with advanced solid tumours. Eur J Cancer 45:1764–1772

    Article  PubMed  CAS  Google Scholar 

  37. Tiemann K, Rossi JJ (2009) RNAi-based therapeutics-current status, challenges and prospects. EMBO Mol Med 1:142–151

    Article  PubMed  CAS  Google Scholar 

  38. Aagaard L, Rossi JJ (2007) RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59:75–86

    Article  PubMed  CAS  Google Scholar 

  39. Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–184

    Article  PubMed  CAS  Google Scholar 

  40. De Vincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E, Meyers R, Gollob J, Vaishnaw A (2010) A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci USA 107:8800–8805

    Article  Google Scholar 

  41. Hickerson RP, Leachman SA, Pho LN, Gonzalez–Gonzalez E, Smith FJ, McLean WH, Contag CH, Leake D, Milstone LM, Kaspar RL (2011) Development of quantitative molecular clinical end points for siRNA clinical trials. J Invest Dermatol 131:1029–1036

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Scientific Grants, P. R. China (81072028, 30800998), Priority Academic Program Development of Jiangsu Higher Education Institutions and Foundation for Key Medical Talents in Jiangsu Province (RC 2007085).

Conflict of interest

The authors indicated no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxiong Zhou.

Additional information

Xiaoling Ding, Xiaorong Zhou authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, X., Zhou, X., Zhang, H. et al. Triptolide augments the effects of 5-lipoxygenase RNA interference in suppressing pancreatic tumor growth in a xenograft mouse model. Cancer Chemother Pharmacol 69, 253–261 (2012). https://doi.org/10.1007/s00280-011-1698-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-011-1698-5

Keywords

Navigation