Skip to main content

Advertisement

Log in

Direct discovery and validation of a peptide/MHC epitope expressed in primary human breast cancer cells using a TCRm monoclonal antibody with profound antitumor properties

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The identification and validation of new cancer-specific T cell epitopes continues to be a major area of research interest. Nevertheless, challenges remain to develop strategies that can easily discover and validate epitopes expressed in primary cancer cells. Regarded as targets for T cells, peptides presented in the context of the major histocompatibility complex (MHC) are recognized by monoclonal antibodies (mAbs). These mAbs are of special importance as they lend themselves to the detection of epitopes expressed in primary tumor cells. Here, we use an approach that has been successfully utilized in two different infectious disease applications (WNV and influenza). A direct peptide-epitope discovery strategy involving mass spectrometric analysis led to the identification of peptide YLLPAIVHI in the context of MHC A*02 allele (YLL/A2) from human breast carcinoma cell lines. We then generated and characterized an anti-YLL/A2 mAb designated as RL6A TCRm. Subsequently, the TCRm mAb was used to directly validate YLL/A2 epitope expression in human breast cancer tissue, but not in normal control breast tissue. Moreover, mice implanted with human breast cancer cells grew tumors, yet when treated with RL6A TCRm showed a marked reduction in tumor size. These data demonstrate for the first time a coordinated direct discovery and validation strategy that identified a peptide/MHC complex on primary tumor cells for antibody targeting and provide a novel approach to cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weiner LM, Belldegrun AS, Crawford J, Tolcher AW, Lockbaum P, Arends RH, Navale L, Amado RG, Schwab G, Figlin RA (2008) Dose and schedule study of panitumumab monotherapy in patients with advanced solid malignancies. Clin Cancer Res 14:502–508

    Article  CAS  PubMed  Google Scholar 

  2. Halama N, Herrmann C, Jaeger D, Herrmann T (2008) Treatment with cetuximab, bevacizumab and irinotecan in heavily pretreated patients with metastasized colorectal cancer. Anticancer Res 28:4111–4115

    CAS  PubMed  Google Scholar 

  3. Grothey A, Sugrue MM, Purdie DM, Dong W, Sargent D, Hedrick E, Kozloff M (2008) Bevacizumab beyond first progression is associated with prolonged overall survival in metastatic colorectal cancer: results from a large observational cohort study (BRiTE). J Clin Oncol 26:5326–5334

    Article  CAS  PubMed  Google Scholar 

  4. Kabbinavar F, Irl C, Zurlo A, Hurwitz H (2008) Bevacizumab improves the overall and progression-free survival of patients with metastatic colorectal cancer treated with 5-fluorouracil-based regimens irrespective of baseline risk. Oncology 75:215–223

    Article  CAS  PubMed  Google Scholar 

  5. Cartwright T, Kuefler P, Cohn A, Hyman W, Berger M, Richards D, Vukelja S, Nugent JE, Ruxer RL Jr, Boehm KA et al (2008) Results of a phase II trial of cetuximab plus capecitabine/irinotecan as first-line therapy for patients with advanced and/or metastatic colorectal cancer. Clin Colorectal Cancer 7:390–397

    Article  CAS  PubMed  Google Scholar 

  6. Liang K, Lu Y, Jin W, Ang KK, Milas L, Fan Z (2003) Sensitization of breast cancer cells to radiation by trastuzumab. Mol Cancer Ther 2:1113–1120

    CAS  PubMed  Google Scholar 

  7. Baselga J, Norton L, Albanell J, Kim YM, Mendelsohn J (1998) Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 58:2825–2831

    CAS  PubMed  Google Scholar 

  8. Shastri N, Schwab S, Serwold T (2002) Producing nature’s gene-chips: the generation of peptides for display by MHC class I molecules. Annu Rev Immunol 20:463–493

    Article  CAS  PubMed  Google Scholar 

  9. Brodsky FM, Lem L, Bresnahan PA (1996) Antigen processing and presentation. Tissue Antigens 47:464–471

    Article  CAS  PubMed  Google Scholar 

  10. Alexander RB, Brady F, Leffell MS, Tsai V, Celis E (1998) Specific T cell recognition of peptides derived from prostate-specific antigen in patients with prostate cancer. Urology 51:150–157

    Article  CAS  PubMed  Google Scholar 

  11. Wolfel T, Hauer M, Klehmann E, Brichard V, Ackermann B, Knuth A, Boon T, Meyer Zum Buschenfelde KH (1993) Analysis of antigens recognized on human melanoma cells by A2-restricted cytolytic T lymphocytes (CTL). Int J Cancer 55:237–244

    Article  CAS  PubMed  Google Scholar 

  12. Wahl A, Weidanz J, Hildebrand W (2006) Direct class I HLA antigen discovery to distinguish virus-infected and cancerous cells. Expert Rev Proteomics 3:641–652

    Article  CAS  PubMed  Google Scholar 

  13. Kessler JH, Melief CJ (2007) Identification of T-cell epitopes for cancer immunotherapy. Leukemia 21:1859–1874

    Article  CAS  PubMed  Google Scholar 

  14. Robinson J, Waller MJ, Parham P, de Groot N, Bontrop R, Kennedy LJ, Stoehr P, Marsh SG (2003) IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res 31:311–314

    Article  CAS  PubMed  Google Scholar 

  15. Robinson J, Marsh SG (2003) HLA informatics: accessing HLA sequences from sequence databases. Methods Mol Biol 210:3–21

    CAS  PubMed  Google Scholar 

  16. Jaramillo A, Majumder K, Manna PP, Fleming TP, Doherty G, Dipersio JF, Mohanakumar T (2002) Identification of HLA-A3-restricted CD8+ T cell epitopes derived from mammaglobin-A, a tumor-associated antigen of human breast cancer. Int J Cancer 102:499–506

    Article  CAS  PubMed  Google Scholar 

  17. Rosenberg SA (1996) Development of cancer immunotherapies based on identification of the genes encoding cancer regression antigens. J Natl Cancer Inst 88:1635–1644

    Article  CAS  PubMed  Google Scholar 

  18. Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michel H, Sevilir N, Cox AL, Appella E, Engelhard VH (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255:1261–1263

    Article  CAS  PubMed  Google Scholar 

  19. Hawkins OE, Vangundy RS, Eckerd AM, Bardet W, Buchli R, Weidanz JA, Hildebrand WH (2008) Identification of breast cancer peptide epitopes presented by HLA-A*0201. J Proteome Res 7:1445–1457

    Article  CAS  PubMed  Google Scholar 

  20. Hickman HD, Luis AD, Buchli R, Few SR, Sathiamurthy M, VanGundy RS, Giberson CF, Hildebrand WH (2004) Toward a definition of self: proteomic evaluation of the class I peptide repertoire. J Immunol 172:2944–2952

    CAS  PubMed  Google Scholar 

  21. Prilliman KR, Jackson KW, Lindsey M, Wang J, Crawford D, Hildebrand WH (1999) HLA-B15 peptide ligands are preferentially anchored at their C termini. J Immunol 162:7277–7284

    CAS  PubMed  Google Scholar 

  22. Andersen PS, Stryhn A, Hansen BE, Fugger L, Engberg J, Buus S (1996) A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells. Proc Natl Acad Sci USA 93:1820–1824

    Article  CAS  PubMed  Google Scholar 

  23. Zhong G, Reis e Sousa C, Germain RN (1997) Antigen-unspecific B cells and lymphoid dendritic cells both show extensive surface expression of processed antigen-major histocompatibility complex class II complexes after soluble protein exposure in vivo or in vitro. J Exp Med 186:673–682

    Article  CAS  PubMed  Google Scholar 

  24. Weidanz JA, Nguyen T, Woodburn T, Neethling FA, Chiriva-Internati M, Hildebrand WH, Lustgarten J (2006) Levels of specific peptide–HLA class I complex predicts tumor cell susceptibility to CTL killing. J Immunol 177:5088–5097

    CAS  PubMed  Google Scholar 

  25. Weidanz JA, Piazza P, Hickman-Miller H, Woodburn D, Nguyen T, Wahl A, Neethling F, Chiriva-Internati M, Rinaldo CR, Hildebrand WH (2007) Development and implementation of a direct detection, quantitation and validation system for class I MHC self-peptide epitopes. J Immunol Methods 318:47–58

    Article  CAS  PubMed  Google Scholar 

  26. Prilliman K, Lindsey M, Zuo Y, Jackson KW, Zhang Y, Hildebrand W (1997) Large-scale production of class I bound peptides: assigning a signature to HLA-B*1501. Immunogenetics 45:379–385

    Article  CAS  PubMed  Google Scholar 

  27. Wei ML, Cresswell P (1992) HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 356:443–446

    Article  CAS  PubMed  Google Scholar 

  28. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274:94–96

    Article  CAS  PubMed  Google Scholar 

  29. Wittman VP, Woodburn D, Nguyen T, Neethling FA, Wright S, Weidanz JA (2006) Antibody targeting to a class I MHC-peptide epitope promotes tumor cell death. J Immunol 177:4187–4195

    CAS  PubMed  Google Scholar 

  30. Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54:187–207

    Article  CAS  PubMed  Google Scholar 

  31. Clark CE, Vonderheide RH (2005) Getting to the surface: a link between tumor antigen discovery and natural presentation of peptide–MHC complexes. Clin Cancer Res 11:5333–5336

    Article  CAS  PubMed  Google Scholar 

  32. Mosca PJ, Hobeika AC, Clay TM, Morse MA, Lyerly HK (2001) Direct detection of cellular immune responses to cancer vaccines. Surgery 129:248–254

    Article  CAS  PubMed  Google Scholar 

  33. Wahl A, Schafer F, Bardet W, Buchli R, Air GM, Hildebrand WH (2009) HLA class I molecules consistently present internal influenza epitopes. Proc Natl Acad Sci USA 106:540–545

    Article  CAS  PubMed  Google Scholar 

  34. Parsons R, Lelic A, Hayes L, Carter A, Marshall L, Evelegh C, Drebot M, Andonova M, McMurtrey C, Hildebrand W et al (2008) The memory T cell response to West Nile virus in symptomatic humans following natural infection is not influenced by age and is dominated by a restricted set of CD8+ T cell epitopes. J Immunol 181:1563–1572

    CAS  PubMed  Google Scholar 

  35. Heinlein UA (1998) Dead box for the living. J Pathol 184:345–347

    Article  CAS  PubMed  Google Scholar 

  36. Endoh H, Maruyama K, Masuhiro Y, Kobayashi Y, Goto M, Tai H, Yanagisawa J, Metzger D, Hashimoto S, Kato S (1999) Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 19:5363–5372

    CAS  PubMed  Google Scholar 

  37. Rossler OG, Hloch P, Schutz N, Weitzenegger T, Stahl H (2000) Structure and expression of the human p68 RNA helicase gene. Nucleic Acids Res 28:932–939

    Article  CAS  PubMed  Google Scholar 

  38. Nicol SM, Causevic M, Prescott AR, Fuller-Pace FV (2000) The nuclear DEAD box RNA helicase p68 interacts with the nucleolar protein fibrillarin and colocalizes specifically in nascent nucleoli during telophase. Exp Cell Res 257:272–280

    Article  CAS  PubMed  Google Scholar 

  39. Kitamura A, Nishizuka M, Tominaga K, Tsuchiya T, Nishihara T, Imagawa M (2001) Expression of p68 RNA helicase is closely related to the early stage of adipocyte differentiation of mouse 3T3-L1 cells. Biochem Biophys Res Commun 287:435–439

    Article  CAS  PubMed  Google Scholar 

  40. Liu ZR (2002) p68 RNA helicase is an essential human splicing factor that acts at the U1 snRNA-5’ splice site duplex. Mol Cell Biol 22:5443–5450

    Article  CAS  PubMed  Google Scholar 

  41. Bates GJ, Nicol SM, Wilson BJ, Jacobs AM, Bourdon JC, Wardrop J, Gregory DJ, Lane DP, Perkins ND, Fuller-Pace FV (2005) The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J 24:543–553

    Article  CAS  PubMed  Google Scholar 

  42. Camats M, Guil S, Kokolo M, Bach-Elias M (2008) P68 RNA helicase (DDX5) alters activity of cis- and trans-acting factors of the alternative splicing of H-Ras. PLoS ONE 3:e2926

    Article  PubMed  Google Scholar 

  43. Yang L, Lin C, Liu ZR (2005) Phosphorylations of DEAD box p68 RNA helicase are associated with cancer development and cell proliferation. Mol Cancer Res 3:355–363

    Article  CAS  PubMed  Google Scholar 

  44. Causevic M, Hislop RG, Kernohan NM, Carey FA, Kay RA, Steele RJ, Fuller-Pace FV (2001) Overexpression and poly-ubiquitylation of the DEAD-box RNA helicase p68 in colorectal tumours. Oncogene 20:7734–7743

    Article  CAS  PubMed  Google Scholar 

  45. Denkberg G, Reiter Y (2006) Recombinant antibodies with T-cell receptor-like specificity: novel tools to study MHC class I presentation. Autoimmun Rev 5:252–257

    Article  CAS  PubMed  Google Scholar 

  46. Cohen CJ, Sarig O, Yamano Y, Tomaru U, Jacobson S, Reiter Y (2003) Direct phenotypic analysis of human MHC class I antigen presentation: visualization, quantitation, and in situ detection of human viral epitopes using peptide-specific, MHC-restricted human recombinant antibodies. J Immunol 170:4349–4361

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. William P. Weidanz for critical discussion of the data. We thank Dr. Stephen Wright and Dr. Piotr Tabaczewski for his assistance with the mouse models and Dr. Kathryn Norton for tissue acquisition.

Conflict of interest statement

Jon A. Weidanz is Chief Scientist and founder of Receptor Logic, Inc., Abilene, Texas, 79601. Study was supported in part by Receptor Logic, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon A. Weidanz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, B., Hawkins, O.E., Neethling, F.A. et al. Direct discovery and validation of a peptide/MHC epitope expressed in primary human breast cancer cells using a TCRm monoclonal antibody with profound antitumor properties. Cancer Immunol Immunother 59, 563–573 (2010). https://doi.org/10.1007/s00262-009-0774-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0774-8

Keywords

Navigation