Skip to main content
Log in

Synthesis, preclinical evaluation, and a pilot clinical imaging study of [18F]AlF-NOTA-JR11 for neuroendocrine neoplasms compared with [68Ga]Ga-DOTA-TATE

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

A [18F]AlF-labeled somatostatin receptor (SSTR) antagonist was developed for imaging of neuroendocrine neoplasms (NENs), evaluated and compared with [68Ga]Ga-DOTA-TATE.

Method

[18F]AlF-NOTA-JR11 was synthesized manually and qualified with high-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LC-MS). The cellular uptake, internalization, and saturation binding were performed with HEK293-SSTR2 cells. Biodistribution and micro-PET imaging were carried out with HEK293-SSTR2 tumor-bearing mice. [18F]AlF-NOTA-JR11 PET/MR imaging and [68Ga]Ga-DOTA-TATE PET/CT were performed with ten patients of NEN at 50~60 min post-injection (p.i.). Normal organ biodistribution and tumor detectability were evaluated.

Result

[18F]AlF-NOTA-JR11(24~36 GBq/μmol) was prepared within 30 min and 51.35 ± 3.30% (n > 10)of radiochemical yield. The radiochemical purity was 98.74 ± 1.24% (n > 10). Two stereoisomers were found and confirmed by LC-MS. The cellular uptake of [18F]AlF-NOTA-JR11 and [68Ga]Ga-DOTA-TATE were 4.50 ± 0.31 and 4.50 ± 0.13 %AD/105 cells at 30 min, and the internalization at 37 °C of [18F]AlF-NOTA-JR11 (5.47 ± 0.32% at 60 min) was significantly lower than [68Ga]Ga-DOTA-TATE (66.89 ± 1.62% at 60 min). The affinity of [18F]AlF-NOTA-JR11 (Kd = 11.59 ± 1.31 nM) was slightly lower than [68Ga]Ga-DOTA-TATE (Kd = 7.36 ± 1.02 nM); [18F]AlF-NOTA-JR11 showed high uptake in tumor (9.02 ± 0.92 %ID/g at 60 min p.i.) which can be blocked by 50 μg of NOTA-JR11 (3.40 ± 1.64 %ID/g at 60 min p.i.); the result was coincident with micro-PET imaging. Imaging study of NEN patients showed that more lesions were found only by [18F]AlF-NOTA-JR11 (n = 67 vs. 1 only by [68Ga]Ga-DOTA-TATE), and the uptakes of [18F]AlF-NOTA-JR11 in majority normal organs were significantly lower than [68Ga]Ga-DOTA-TATE. The target to nontarget of maximum of standard uptake value (SUVmax) of [18F]AlF-NOTA-JR11 in liver lesions were significantly higher than those of [68Ga]Ga-DOTA-TATE.

Conclusion

Qualitied [18F]AlF-NOTA-JR11 is prepared conveniently with reasonable yield, and it can bind SSTR2 specifically with high affinity. Excellent imaging capability of [18F]AlF-NOTA-JR11 for NENs is superior to [68Ga]Ga-DOTA-TATE, especially in digestive system. It has a great potential for imaging of NENs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Taal BG, Visser O. Epidemiology of neuroendocrine tumours. Neuroendocrinology. 2004;80(Suppl. 1):3–7.

    Article  CAS  Google Scholar 

  2. Modlin IM, Pavel M, Kidd M, Gustafsson BI. Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Aliment Pharmacol Ther. 2010;31(2):169–88. https://doi.org/10.1111/j.1365-2036.2009.04174.x.

    Article  CAS  PubMed  Google Scholar 

  3. Pavel M, Baudin E, Couvelard A, et al. ENETS consensus guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95(2):157–76. https://doi.org/10.1159/000335597.

    Article  CAS  PubMed  Google Scholar 

  4. Waser B, Tamma ML, Cescato R, Maecke HR, Reubi JC. Highly efficient in vivo agonist-induced internalization of sst2 receptors in somatostatin target tissues [published correction appears in J Nucl Med. 2009 Oct;50(10):1578]. J Nucl Med. 2009;50(6):936–41. https://doi.org/10.2967/jnumed.108.061457.

    Article  CAS  PubMed  Google Scholar 

  5. Cescato R, Schulz S, Waser B, et al. Internalization of sst2, sst3, and sst5 receptors: effects of somatostatin agonists and antagonists. J Nucl Med. 2006;47(3):502–11.

    CAS  PubMed  Google Scholar 

  6. Decristoforo C, Mather SJ, Cholewinski W, Donnemiller E, Riccabona G, Moncayo R. 99mTc-EDDA/HYNIC-TOC: a new 99mTc-labelled radiopharmaceutical for imaging somatostatin receptor-positive tumours; first clinical results and intra-patient comparison with 111In-labelled octreotide derivatives. Eur J Nucl Med. 2000;27(9):1318–25. https://doi.org/10.1007/s002590000289.

    Article  CAS  PubMed  Google Scholar 

  7. Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48(4):508–18. https://doi.org/10.2967/jnumed.106.035667.

    Article  CAS  PubMed  Google Scholar 

  8. Wild D, Fani M, Fischer R, Del Pozzo L, Kaul F, Krebs S, et al. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: a pilot study. J Nucl Med. 2014;55(8):1248–52. https://doi.org/10.2967/jnumed.114.138834.

    Article  CAS  PubMed  Google Scholar 

  9. Nicolas GP, Schreiter N, Kaul F, et al. Sensitivity comparison of 68Ga-OPS202 and 68Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors: a prospective phase II imaging study. J Nucl Med. 2018;59(6):915–21. https://doi.org/10.2967/jnumed.117.199760.

    Article  CAS  PubMed  Google Scholar 

  10. Fani M, Del Pozzo L, Abiraj K, et al. PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: the chelate makes the difference. J Nucl Med. 2011;52(7):1110–8. https://doi.org/10.2967/jnumed.111.087999.

    Article  CAS  PubMed  Google Scholar 

  11. Johnbeck CB, Knigge U, Loft A, et al. Head-to-head comparison of 64Cu-DOTATATE and 68Ga-DOTATOC PET/CT: a prospective study of 59 patients with neuroendocrine tumors. J Nucl Med. 2017;58(3):451–7. https://doi.org/10.2967/jnumed.116.180430.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu W, Cheng Y, Wang X, et al. Head-to-head comparison of 68Ga-DOTA-JR11 and 68Ga-DOTATATE PET/CT in patients with metastatic, well-differentiated neuroendocrine tumors: a prospective study. J Nucl Med. 2020;61(6):897–903. https://doi.org/10.2967/jnumed.119.235093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. D'Souza CA, McBride WJ, Sharkey RM, Todaro LJ, Goldenberg DM. High-yielding aqueous 18F-labeling of peptides via Al18F chelation. Bioconjug Chem. 2011;22(9):1793–803. https://doi.org/10.1021/bc200175c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McBride WJ, Sharkey RM, Goldenberg DM. Radiofluorination using aluminum-fluoride (Al18F). EJNMMI Res. 2013;3(1):36. Published 2013 May 8. https://doi.org/10.1186/2191-219X-3-36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen Q, Meng X, McQuade P, et al. Synthesis and preclinical evaluation of folate-NOTA-Al(18)F for PET imaging of folate-receptor-positive tumors. Mol Pharm. 2016;13(5):1520–7. https://doi.org/10.1021/acs.molpharmaceut.5b00989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu S, Liu H, Jiang H, Xu Y, Zhang H, Cheng Z. One-step radiosynthesis of 18F-AlF-NOTA-RGD2 for tumor angiogenesis PET imaging. Eur J Nucl Med Mol Imaging. 2011;38(9):1732–41. https://doi.org/10.1007/s00259-011-1847-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McBride WJ, Sharkey RM, Karacay H, et al. A novel method of 18F radiolabeling for PET. J Nucl Med. 2009;50(6):991–8. https://doi.org/10.2967/jnumed.108.060418.

    Article  CAS  PubMed  Google Scholar 

  18. Pauwels E, Cleeren F, Tshibangu T, Koole M, Serdons K, Dekervel J, et al. [18F]AlF-NOTA-octreotide PET imaging: biodistribution, dosimetry and first comparison with [68Ga]Ga-DOTATATE in neuroendocrine tumour patients. Eur J Nucl Med Mol Imaging. 2020 Dec;47(13):3033–46. https://doi.org/10.1007/s00259-020-04918-4.

    Article  CAS  PubMed  Google Scholar 

  19. Niedermoser S, Chin J, Wängler C, Kostikov A, Bernard-Gauthier V, Vogler N, et al. In vivo evaluation of 18F-SiFAlin-modified TATE: a potential challenge for 68Ga-DOTATATE, the clinical gold standard for somatostatin receptor imaging with PET. J Nucl Med. 2015;56(7):1100–5. https://doi.org/10.2967/jnumed.114.149583.

    Article  CAS  PubMed  Google Scholar 

  20. Ilhan H, Lindner S, Todica A, Cyran CC, Tiling R, Auernhammer CJ, et al. Biodistribution and first clinical results of 18F-SiFAlin-TATE PET: a novel 18F-labeled somatostatin analog for imaging of neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2020;47(4):870–80. https://doi.org/10.1007/s00259-019-04501-6.

    Article  CAS  PubMed  Google Scholar 

  21. Paspulati RM, Gupta A. PET/MR imaging in cancers of the gastrointestinal tract. PET Clin. 2016;11(4):403–23. https://doi.org/10.1016/j.cpet.2016.05.004.

    Article  PubMed  Google Scholar 

  22. Sato N, Hassan R, Axworthy DB, Wong KJ, Yu S, Theodore LJ, et al. Pretargeted radioimmunotherapy of mesothelin-expressing cancer using a tetravalent single-chain Fv-streptavidin fusion protein. J Nucl Med. 2005;46(7):1201–9.

    PubMed  Google Scholar 

  23. Misri R, Saatchi K, Ng SS, Kumar U, Häfeli UO. Evaluation of (111)in labeled antibodies for SPECT imaging of mesothelin expressing tumors. Nucl Med Biol. 2011;38(6):885–96. https://doi.org/10.1016/j.nucmedbio.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  24. Schottelius M, Šimeček J, Hoffmann F, Willibald M, Schwaiger M, Wester HJ. Twins in spirit - episode I: comparative preclinical evaluation of [(68)Ga]DOTATATE and [(68)Ga]HA-DOTATATE. EJNMMI Res. 2015;5:22. https://doi.org/10.1186/s13550-015-0099-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bozkurt MF, Virgolini I, Balogova S, et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F-DOPA. Eur J Nucl Med Mol Imaging. 2017;44(9):1588–601. https://doi.org/10.1007/s00259-017-3728-y.

    Article  CAS  PubMed  Google Scholar 

  26. Nicolas GP, Beykan S, Bouterfa H, et al. Safety, biodistribution, and radiation dosimetry of 68Ga-OPS202 in patients with gastroenteropancreatic neuroendocrine tumors: a prospective phase I imaging study. J Nucl Med. 2018;59(6):909–14. https://doi.org/10.2967/jnumed.117.199737.

    Article  CAS  PubMed  Google Scholar 

  27. Krebs S, Pandit-Taskar N, Reidy D, et al. Biodistribution and radiation dose estimates for 68Ga-DOTA-JR11 in patients with metastatic neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2019;46(3):677–85. https://doi.org/10.1007/s00259-018-4193-y.

    Article  CAS  PubMed  Google Scholar 

  28. Liu T, Liu C, Xu X, Liu F, Guo X, Li N, Wang X, Yang J, Yang X, Zhu H, Yang Z. Preclinical evaluation and pilot clinical study of Al18F-PSMA-BCH for prostate cancer PET imaging. J Nucl Med. 2019;60(9):1284-1292. doi: https://doi.org/10.2967/jnumed.118.221671. [29] McBride WJ, D'Souza CA, Sharkey RM, et al. Improved 18F labeling of peptides with a fluoride-aluminum-chelate complex. Bioconjug Chem 2010;21(7):1331–1340. doi:https://doi.org/10.1021/bc100137x.

  29. McBride WJ, D’Souza CA, Sharkey RM, et al. Improved 18F labeling of peptides with a fluoride-aluminum-chelate complex. Bioconjug Chem. 2010;21(7):1331–40. https://doi.org/10.1021/bc100137x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tshibangu T, Cawthorne C, Serdons K, Pauwels E, Gsell W, Bormans G, et al. Automated GMP compliant production of [18F]AlF-NOTA-octreotide. EJNMMI Radiopharm Chem. 2020;5(1):4. https://doi.org/10.1186/s41181-019-0084-1.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Laverman P, McBride WJ, Sharkey RM, et al. A novel facile method of labeling octreotide with (18)F-fluorine. J Nucl Med. 2010;51(3):454–61. https://doi.org/10.2967/jnumed.109.066902.

    Article  CAS  PubMed  Google Scholar 

  32. Reubi JC, Schär JC, Waser B, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27(3):273–82. https://doi.org/10.1007/s002590050034.

    Article  CAS  PubMed  Google Scholar 

  33. Cescato R, Erchegyi J, Waser B, et al. Design and in vitro characterization of highly sst2-selective somatostatin antagonists suitable for radiotargeting. J Med Chem. 2008;51(13):4030–7. https://doi.org/10.1021/jm701618q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fani M, Braun F, Waser B, et al. Unexpected sensitivity of sst2 antagonists to N-terminal radiometal modifications. J Nucl Med. 2012;53(9):1481–9. https://doi.org/10.2967/jnumed.112.102764.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China projects (81871386, 81671733) and Natural Science Foundation of Beijing Municipality (7171002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangyuan Yu or Zhi Yang.

Ethics declarations

No other potential conflicts of interest relevant to this article exist.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by Ethics Committee of Beijing Cancer Hospital and Institute (permit 2,014,011,313 and 2020KT15). Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Radiopharmacy

Supplementary Information

ESM 1

(DOCX 623 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Liu, T., Ding, J. et al. Synthesis, preclinical evaluation, and a pilot clinical imaging study of [18F]AlF-NOTA-JR11 for neuroendocrine neoplasms compared with [68Ga]Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging 48, 3129–3140 (2021). https://doi.org/10.1007/s00259-021-05249-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05249-8

Keywords

Navigation