Skip to main content
Log in

Surfactin from Bacillus subtilis displays an unexpected anti-Legionella activity

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A contaminant bacterial strain was found to exhibit an antagonistic activity against Legionella pneumophila, the causative agent of Legionnaires’ disease. The bacterial strain was identified as a Bacillus subtilis and named B. subtilis AM1. PCR analysis revealed the presence of the sfp gene, involved in the biosynthesis of surfactin, a lipopeptide with versatile bioactive properties. The bioactive substances were extracted from AM1 cell-free supernatant with ethyl acetate and purified using reversed phase HPLC (RP-HPLC). Subsequent ESI-MS analyses indicated the presence of two active substances with protonated molecular ions at m/z 1008 and 1036 Da, corresponding to surfactin isoforms. Structures of lipopeptides were further determined by tandem mass spectrometry and compared to the spectra of a commercially available surfactin mixture. Surfactin displays an antibacterial spectrum almost restricted to the Legionella genus (MICs range 1–4 μg/mL) and also exhibits a weak activity toward the amoeba Acanthamoeba castellanii, known to be the natural reservoir of L. pneumophila. Anti-biofilm assays demonstrated that 66 μg/mL of surfactin successfully eliminated 90 % of a 6-day-old biofilm. In conclusion, this study reveals for the first time the potent activity of surfactin against Legionella sp. and preformed biofilms thus providing new directions toward the use and the development of lipopeptides for the control of Legionella spread in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NA (2008) Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 150(3):289–303. doi:10.1007/s12010-008-8153-z

    Article  CAS  PubMed  Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31(3):488–494

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134(1):307–319. doi:10.1104/pp. 103.028712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bigot R, Bertaux J, Frere J, Berjeaud JM (2013) Intra-amoeba multiplication induces chemotaxis and biofilm colonization and formation for Legionella. PLoS One 8(10):e77875. doi:10.1371/journal.pone.0077875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borella P, Guerrieri E, Marchesi I, Bondi M, Messi P (2005) Water ecology of Legionella and protozoan: environmental and public health perspectives. Biotechnol Annu Rev 11:355–380. doi:10.1016/S1387-2656(05)11011-4

    CAS  PubMed  Google Scholar 

  • Cazalet C, Jarraud S, Ghavi-Helm Y, Kunst F, Glaser P, Etienne J, Buchrieser C (2008) Multigenome analysis identifies a worldwide distributed epidemic Legionella pneumophila clone that emerged within a highly diverse species. Genome Res 18(3):431–441. doi:10.1101/gr.7229808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37(6):1771–1776

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cooper IR, Hanlon GW (2010) Resistance of Legionella pneumophila serotype 1 biofilms to chlorine-based disinfection. J Hosp Infect 74(2):152–159. doi:10.1016/j.jhin.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  • Declerck P (2010) Biofilms: the environmental playground of Legionella pneumophila. Environ Microbiol 12(3):557–566. doi:10.1111/j.1462-2920.2009.02025.x

    Article  CAS  PubMed  Google Scholar 

  • Dimkic I, Zivkovic S, Beric T, Ivanovic Z, Gavrilovic V, Stankovic S, Fira D (2013) Characterization and evaluation of two Bacillus strains, SS-12.6 and SS-13.1, as potential agents for the control of phytopathogenic bacteria and fungi. Biol Control 65:312–321

    Article  Google Scholar 

  • Dupuy M, Mazoua S, Berne F, Bodet C, Garrec N, Herbelin P, Menard-Szczebara F, Oberti S, Rodier MH, Soreau S, Wallet F, Hechard Y (2011) Efficiency of water disinfectants against Legionella pneumophila and Acanthamoeba. Water Res 45(3):1087–1094. doi:10.1016/j.watres.2010.10.025

    Article  CAS  PubMed  Google Scholar 

  • Escoll P, Rolando M, Gomez-Valero L, Buchrieser C (2013) From amoeba to macrophages: exploring the molecular mechanisms of Legionella pneumophila infection in both hosts. Curr Top Microbiol Immunol 376:1–34. doi:10.1007/82_2013_351

    PubMed  Google Scholar 

  • Fassi Fehri L, Wroblewski H, Blanchard A (2007) Activities of antimicrobial peptides and synergy with enrofloxacin against Mycoplasma pulmonis. Antimicrob Agents Chemother 51(2):468–474. doi:10.1128/AAC. 01030-06

    Article  PubMed Central  PubMed  Google Scholar 

  • Geetha I, Manonmani AM, Paily KP (2010) Identification and characterization of a mosquito pupicidal metabolite of a Bacillus subtilis subsp. subtilis strain. Appl Microbiol Biotechnol 86(6):1737–1744. doi:10.1007/s00253-010-2449-y

    Article  CAS  PubMed  Google Scholar 

  • Gudina EJ, Rangarajan V, Sen R, Rodrigues LR (2013) Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci 34(12):667–675. doi:10.1016/j.tips.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  • Haddad NI, Liu X, Yang S, Mu B (2008) Surfactin isoforms from Bacillus subtilis HSO121: separation and characterization. Protein Pept Lett 15(3):265–269

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108. doi:10.1038/nrmicro821

    Article  CAS  PubMed  Google Scholar 

  • Hsieh FC, Li MC, Lin TC, Kao SS (2004) Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 49(3):186–191. doi:10.1007/s00284-004-4314-7

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Lu Z, Bie X, Lu F, Zhao H, Yang S (2007) Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis fmbj strains using a response surface method. Appl Microbiol Biotechnol 74(2):454–461. doi:10.1007/s00253-006-0674-1

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Suo J, Cui Y (2011) Optimization of antimicrobial activity of surfactin and polylysine against Salmonella enteritidis in milk evaluated by a response surface methodology. Foodborne Pathog Dis 8(3):439–443. doi:10.1089/fpd.2010.0738

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Wei Z, Zhao G, Gao X, Yang S, Cui Y (2008) Optimization of sterilization of Escherichia coli in milk by surfactin and fengycin using a response surface method. Curr Microbiol 56(4):376–381. doi:10.1007/s00284-007-9066-8

    Article  CAS  PubMed  Google Scholar 

  • Hwang YH, Park BK, Lim JH, Kim MS, Park SC, Hwang MH, Yun HI (2007) Lipopolysaccharide-binding and neutralizing activities of surfactin C in experimental models of septic shock. Eur J Pharmacol 556(1–3):166–171. doi:10.1016/j.ejphar.2006.10.031

    Article  CAS  PubMed  Google Scholar 

  • Janek T, Lukaszewicz M, Rezanka T, Krasowska A (2010) Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour Technol 101(15):6118–6123. doi:10.1016/j.biortech.2010.02.109

    Article  CAS  PubMed  Google Scholar 

  • Kakinuma AHM, Isono M, Tamura G, Arima K (1969a) Determination of amino acid sequence in surfactin, a crystalline peptidolipid surfactant produced by Bacillus subtilis. Agric Biol Chem 33:971–997

    Article  CAS  Google Scholar 

  • Kakinuma ASH, Isono M, Tamura G, Arima K (1969b) Determination of fatty acid in surfactin and elucidation of the total structure of surfactin. Agric Biol Chem 33:973–976

    Article  CAS  Google Scholar 

  • Kim BR, Anderson JE, Mueller SA, Gaines WA, Kendall AM (2002) Literature review—efficacy of various disinfectants against Legionella in water systems. Water Res 36(18):4433–4444

    Article  CAS  PubMed  Google Scholar 

  • Kowall M, Vater J, Kluge B, Stein T, Franke P, Ziessow D (1998) Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interface Sci 204(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GE, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51(1):97–113

    Article  CAS  PubMed  Google Scholar 

  • Loret JF, Greub G (2010) Free-living amoebae: biological by-passes in water treatment. Int J Hyg Environ Health 213(3):167–175. doi:10.1016/j.ijheh.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M, de Bruijn I, Cohen MF, Raaijmakers JM (2009) Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Appl Environ Microbiol 75(21):6804–6811. doi:10.1128/AEM. 01272-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA, Dowdle WR (1977) Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N Engl J Med 297(22):1197–1203. doi:10.1056/NEJM197712012972202

    Article  CAS  PubMed  Google Scholar 

  • Mireles JR 2nd, Toguchi A, Harshey RM (2001) Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183(20):5848–5854. doi:10.1128/JB.183.20.5848-5854.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakano MM, Corbell N, Besson J, Zuber P (1992) Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol Gen Genet MGG 232(2):313–321

    CAS  Google Scholar 

  • Newton HJ, Ang DK, van Driel IR, Hartland EL (2010) Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23(2):274–298. doi:10.1128/CMR. 00052-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nir-Paz R, Prevost MC, Nicolas P, Blanchard A, Wroblewski H (2002) Susceptibilities of Mycoplasma fermentans and Mycoplasma hyorhinis to membrane-active peptides and enrofloxacin in human tissue cell cultures. Antimicrob Agents Chemother 46(5):1218–1225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nissen E, Pauli G, Vater J, Vollenbroich D (1997) Application of surfactin for mycoplasma inactivation in virus stocks. Vitro Cell Dev Biol Anim 33(6):414–415. doi:10.1007/s11626-997-0056-8

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125. doi:10.1016/j.tim.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  • Pecastaings S, Berge M, Dubourg KM, Roques C (2010) Sessile Legionella pneumophila is able to grow on surfaces and generate structured monospecies biofilms. Biofouling 26(7):809–819. doi:10.1080/08927014.2010.520159

    Article  CAS  PubMed  Google Scholar 

  • Peypoux F, Bonmatin JM, Labbe H, Grangemard I, Das BC, Ptak M, Wallach J, Michel G (1994) [Ala4]surfactin, a novel isoform from Bacillus subtilis studied by mass and NMR spectroscopies. Eur J Biochem / FEBS 224(1):89–96

    Article  CAS  Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51(5):553–563

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, de Bruijn I, de Kock MJ (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact 19(7):699–710. doi:10.1094/MPMI-19-0699

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34(6):1037–1062. doi:10.1111/j.1574-6976.2010.00221.x

    CAS  PubMed  Google Scholar 

  • Rogers J, Dowsett AB, Dennis PJ, Lee JV, Keevil CW (1994) Influence of temperature and plumbing material selection on biofilm formation and growth of Legionella pneumophila in a model potable water system containing complex microbial flora. Appl Environ Microbiol 60(5):1585–1592

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sabate DC, Audisio MC (2013) Inhibitory activity of surfactin, produced by different Bacillus subtilis subsp. subtilis strains, against Listeria monocytogenes sensitive and bacteriocin-resistant strains. Microbiol Res 168(3):125–129. doi:10.1016/j.micres.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  • Sabate DC, Carrillo L, Audisio MC (2009) Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples. Res Microbiol 160(3):193–199. doi:10.1016/j.resmic.2009.03.002

    Article  PubMed  Google Scholar 

  • Schuster FL (2002) Cultivation of pathogenic and opportunistic free-living amebas. Clin Microbiol Rev 15(3):342–354

    Article  PubMed Central  PubMed  Google Scholar 

  • Sen R (2010) Surfactin: biosynthesis, genetics and potential applications. Adv Exp Med Biol 672:316–323

    CAS  PubMed  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56(4):845–857. doi:10.1111/j.1365-2958.2005.04587.x

    Article  CAS  PubMed  Google Scholar 

  • Steinert M, Hentschel U, Hacker J (2002) Legionella pneumophila: an aquatic microbe goes astray. FEMS Microbiol Rev 26(2):149–162

    Article  CAS  PubMed  Google Scholar 

  • Symmank H, Franke P, Saenger W, Bernhard F (2002) Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein Eng 15(11):913–921

    Article  CAS  PubMed  Google Scholar 

  • Tang JS, Zhao F, Gao H, Dai Y, Yao ZH, Hong K, Li J, Ye WC, Yao XS (2010) Characterization and online detection of surfactin isomers based on HPLC-MS(n) analyses and their inhibitory effects on the overproduction of nitric oxide and the release of TNF-alpha and IL-6 in LPS-induced macrophages. Mar Drugs 8(10):2605–2618. doi:10.3390/md8102605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Temmerman R, Vervaeren H, Noseda B, Boon N, Verstraete W (2007) Inhibition of Legionella pneumophila by Bacillus sp. Eng Life Sci 7:497–503

    Article  CAS  Google Scholar 

  • Thomas V, Bouchez T, Nicolas V, Robert S, Loret JF, Levi Y (2004) Amoebae in domestic water systems: resistance to disinfection treatments and implication in Legionella persistence. J Appl Microbiol 97(5):950–963. doi:10.1111/j.1365-2672.2004.02391.x

    Article  CAS  PubMed  Google Scholar 

  • Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 20(8):955–965. doi:10.1094/MPMI-20-8-0955

    Article  CAS  PubMed  Google Scholar 

  • Verdon J, Berjeaud JM, Lacombe C, Hechard Y (2008) Characterization of anti-Legionella activity of warnericin RK and delta-lysin I from Staphylococcus warneri. Peptides 29(6):978–984. doi:10.1016/j.peptides.2008.01.017

    Article  CAS  PubMed  Google Scholar 

  • Vollenbroich D, Pauli G, Ozel M, Vater J (1997) Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63(1):44–49

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wingender J, Flemming HC (2011) Biofilms in drinking water and their role as reservoir for pathogens. Int J Hyg Environ Health 214(6):417–423. doi:10.1016/j.ijheh.2011.05.009

    Article  PubMed  Google Scholar 

  • Xu HM, Rong YJ, Zhao MX, Song B, Chi ZM (2014) Antibacterial activity of the lipopetides produced by Bacillus amyloliquefaciens M1 against multidrug-resistant Vibrio spp. isolated from diseased marine animals. Appl Microbiol Biotechnol 98(1):127–136. doi:10.1007/s00253-013-5291-1

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Thilmony R, Bender CL, Schaller A, He SY, Howe GA (2003) Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J 36(4):485–499

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Daniel Guyonnet (University of Poitiers) for help in DNA sequencing. Clemence Loiseau is supported by a grant from the French Minister of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Verdon.

Additional information

Clémence Loiseau and Margot Schlusselhuber contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loiseau, C., Schlusselhuber, M., Bigot, R. et al. Surfactin from Bacillus subtilis displays an unexpected anti-Legionella activity. Appl Microbiol Biotechnol 99, 5083–5093 (2015). https://doi.org/10.1007/s00253-014-6317-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6317-z

Keywords

Navigation