Skip to main content
Log in

Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The major limitation in the synthetic application of two-component Baeyer–Villiger monooxygenases was addressed by identifying the 28-kDa flavin-reductase Fre from Escherichia coli as a suitable supplier of reduced FMN for these enzymes. Coexpression of Fre with either 2,5- or 3,6-diketocamphane monooxygenase from Pseudomonas putida NCIMB 10007 significantly enhanced the conversion of camphor and norcamphor serving as representative ketones. With purified enzymes, full conversion was achieved, while only slight amounts of product were formed in the absence of this flavin reductase. Fusion of the genes of Fre and DKCMOs into single open reading frame constructs resulted in unstable proteins exhibiting flavin reducing, but poor oxygenating activity, which led to overall decreased conversion of camphor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balke K, Kadow M, Mallin H, Saß S, Bornscheuer UT (2012) Discovery, application and protein engineering of Baeyer–Villiger monooxygenases for organic synthesis. Org Biomol Chem 10(31):6249–6265

    Article  CAS  PubMed  Google Scholar 

  • Beecher JE (1997) Sulfoxidation by microbial monooxygenases. Phd Thesis, University of Exeter

  • Bommarius AS, Drauz K (1994) An enzymatic route to L-ornithine from arginine—activation, selectivity and stabilization of L-arginase. Bioorgan Med Chem 2(7):617–626. doi:10.1016/0968-0896(94)85009-7

    Article  CAS  Google Scholar 

  • Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194. doi:10.1038/nature11117

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi:10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  • Campbell ZT, Baldwin TO (2009) Fre is the major flavin reductase supporting bioluminescence from Vibrio harveyi luciferase in. J Biol Chem 284(13):8322–8328. doi:10.1074/jbc.M808977200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chung CT, Niemela SL, Miller, RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA. 86(7):2172–2175

    Google Scholar 

  • Conrad HE, DuBus R, Namvedt M, Gunsalus IC (1965a) Mixed function oxidations II: separation and properties of the enzymes catalyzing camphor lactonization. J Biol Chem 240(1):495–503

    CAS  PubMed  Google Scholar 

  • Conrad HE, Lieb K, Gunsalus IC (1965b) Mixed function oxidation III: an electron transport complex in camphor ketolactonization. J Biol Chem 240(10):4029–4037

    CAS  PubMed  Google Scholar 

  • de Gonzalo G, Mihovilovic MD, Fraaije MW (2010) Recent developments in the application of Baeyer–Villiger monooxygenases as biocatalysts. ChemBioChem 11(16):2208–2231. doi:10.1002/cbic.201000395

    Article  PubMed  Google Scholar 

  • Donoghue NA, Norris DB, Trudgill PW (1976) The purification and properties of cyclohexanone oxygenase from Nocardia globerula CL1 and Acinetobacter NCIMB 9871. Eur J Biochem 63(1):175–192

    Article  CAS  PubMed  Google Scholar 

  • Ellis HR (2010) The FMN-dependent two-component monooxygenase systems. Arch Biochem Biophys 497(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  • Fink MJ, Rial DV, Kapitanova P, Lengar A, Rehdorf J, Cheng Q, Rudroff F, Mihovilovic MD (2012) Quantitative comparison of chiral catalysts selectivity and performance: a generic concept illustrated with cyclododecanone monooxygenase as Baeyer–Villiger biocatalyst. Adv Synth Catal 354:3491–3500. doi:10.1002/adsc.201200453

    Article  CAS  Google Scholar 

  • Fontecave M, Eliasson R, Reichard P (1987) NAD(P)H:flavin oxidoreductase of Escherichia coli. A ferric iron reductase participating in the generation of the free radical of ribonucleotide reductase. J Biol Chem 262(25):12325–12331

    CAS  PubMed  Google Scholar 

  • Gagnon R, Grogan G, Groussain E, Pedragosa-Moreau S, Richardson PF, Roberts SM, Willetts AJ, Alphand V, Lebreton J, Furstoss R (1995) Oxidation of some prochiral 3-substituted cyclobutanones using monooxygenase enzymes: a single-step method for the synthesis of optically enriched 3-substituted γ-lactones. J Chem Soc Perkin Trans I:2527–2528

    Article  Google Scholar 

  • Gagnon R, Grogan G, Wan P, Levitt MS, Peter MR, Willetts AJ (1994) Biological Baeyer–Villiger oxidation of some monocyclic and bicyclic ketones using monooxygenases from Acinetobacter calcoaceticus NCIMB 9871 and Pseudomonas putida NCIMB 10007. J Chem Soc Perkin Trans I:2537–2543

    Article  Google Scholar 

  • Gibson QH, Hastings JW (1962) Oxidation of reduced flavin mononucleotide by molecular oxygen. Biochem J 83(2):368–377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grogan G (1995) Microbial biotransformations: Oxygenation of cyclic ketones by Baeyer–Villiger monooxygenases from camphor-grown Pseudomonas putida NCIMB 10007. PhD thesis, University of Exeter

  • Grogan G, Roberts SM, Wan P, Willetts AJ (1993) Some Baeyer–Villiger oxidations using a monooxygenase enzyme from Pseudomonas putida NCIMB 10007. J Chem Soc Chem Commun 10(8):699–701. doi:10.1039/c39930000699

    Article  Google Scholar 

  • Gunsalus IC, Conrad HE, Trudgill PW, Jacobson LA (1965) Regulation of catabolic metabolism. Israel J Med Sci 1(6):1099–1119

    CAS  Google Scholar 

  • Hanes CS (1932) Studies on plant amylases: the effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley. Biochem J 26:1406–1421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harayama S, Kok M, Neidle EL (1992) Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46(1):565–601. doi:10.1146/annurev.mi.46.100192.003025

    Article  CAS  PubMed  Google Scholar 

  • Hastings JW, Potrikus CJ, Gupta SC, Kurfurst M, Makemson JC (1985) Biochemistry and physiology of bioluminescent bacteria. Adv Microb Physiol 26:235–291. doi:10.1016/s0065-2911(08)60398-7

    Article  CAS  PubMed  Google Scholar 

  • Horowitz NH (1945) On the evolution of biochemical syntheses. Proc Natl Acad Sci USA 31(6):153–157. doi:10.1073/pnas.31.6.153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ingelman M, Ramaswamy S, Nivière V, Fontecave M, Eklund H (1999) Crystal structure of NADPH:flavin oxidoreductase from Escherichia coli. Biochemistry 38(22):7040–7049. doi:10.1021/bi982849m

    Article  CAS  PubMed  Google Scholar 

  • Iwaki H, Grosse S, Bergeron H, Leisch H, Morley K, Hasegawa Y, Lau PCK (2013) Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer–Villiger reactions. Appl Environ Microbiol 79(10):3282–3293. doi:10.1128/aem.03958-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jawanda N, Ahmed K, Tu S-C (2007) Vibrio harveyi flavin reductase−luciferase fusion protein mimics a single-component bifunctional monooxygenase. Biochemistry 47(1):368–377. doi:10.1021/bi701392b

    Article  PubMed  Google Scholar 

  • Jones KH, Smith RT, Trudgill PW (1993) Diketocamphane enantiomer-specific Baeyer–Villiger monooxygenases from camphor-grown Pseudomonas putida ATCC 17453. J Gen Microbiol 139:797–805

    Article  CAS  PubMed  Google Scholar 

  • Kadow M, Loschinski K, Saß S, Schmidt M, Bornscheuer U (2012) Completing the series of BVMOs involved in camphor metabolism of Pseudomonas putida NCIMB 10007 by identification of the two missing genes, their functional expression in E. coli, and biochemical characterization. Appl Microbiol Biotechnol 96(2):419–429. doi:10.1007/s00253-011-3859-1

    Article  CAS  PubMed  Google Scholar 

  • Kadow M, Sass S, Schmidt M, Bornscheuer UT (2011) Recombinant expression and purification of the 2,5-diketocamphane 1,2-monooxygenase from the camphor metabolizing Pseudomonas putida strain NCIMB 10007. AMB Express 1(1):13. doi:10.1186/2191-0855-1-13

    Article  PubMed Central  PubMed  Google Scholar 

  • Klaassen PD, Vollebregt AWHN, Van Den Berg MAP, Hans MDH, Van Der Laan JMB (2010) Process for preparing pravastatin. US Patent US 2010/0217032 A1

  • Koga H, Yamaguchi E, Matsunaga K, Aramaki H, Horiuchi T (1989) Cloning and nucleotide sequences of NADH-putidaredoxin reductase gene (camA) and putidaredoxin gene (camB) involved in cytochrome P-450cam hydroxylase of Pseudomonas putida. J Biochem 106(5):831–836

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • Leisch H, Morley K, Lau PCK (2011) Baeyer−Villiger monooxygenases: more than just green chemistry. Chem Rev 111(7):4165–4222. doi:10.1021/cr1003437

    Article  CAS  PubMed  Google Scholar 

  • Massey V (1994) Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem 269(36):22459–22462

    CAS  PubMed  Google Scholar 

  • Matsuoka T, Miyakoshi S, Tanzawa K, Nakahara K, Hosobuchi M, Serizawa N (1989) Purification and characterization of cytochrome P-450sca from Streptomyces carbophilus. Eur J Biochem 184(3):707–713. doi:10.1111/j.1432-1033.1989.tb15070.x

    Article  CAS  PubMed  Google Scholar 

  • McGhie EJ (1998) Studies on monooxygenases from the camphor degradation pathway in Pseudomonas putida NCIMB 10007. PhD thesis, University of Exeter

  • McGhie EJ, Isupov MN, Schröder E, Littlechild JA (1998) Crystallization and preliminary X-ray diffraction studies of the oxygenating subunit of 3,6-diketocamphane monooxygenase from Pseudomonas putida. Acta Crystallogr Sect D: Biol Crystallogr D54:1036–1038

    Google Scholar 

  • Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55(1):123–142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mirza IA, Yachnin BJ, Wang S, Grosse S, Hln B, Imura A, Iwaki H, Hasegawa Y, Lau PCK, Berghuis AM (2009) Crystal structures of cyclohexanone monooxygenase reveal complex domain movements and a sliding cofactor. J Am Chem Soc 131(25):8848–8854. doi:10.1021/ja9010578

    Article  CAS  PubMed  Google Scholar 

  • Nijvipakul S, Wongratana J, Suadee C, Entsch B, Ballou DP, Chaiyen P (2008) LuxG is a functioning flavin reductase for bacterial luminescence. J Bacteriol 190(5):1531–1538. doi:10.1128/jb.01660-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nivière V, Fieschi F, Décout J-L, Fontecave M (1996) Is the NADPH:flavin oxidoreductase from Escherichia coli a member of the ferredoxin-NADP+ reductase family? J Biol Chem 271(28):16656–16661. doi:10.1074/jbc.271.28.16656

    Article  PubMed  Google Scholar 

  • Nodate M, Kubota M, Misawa N (2006) Functional expression system for cytochrome P450 genes using the reductase domain of self-sufficient P450RhF from Rhodococcus sp NCIMB 9784. Appl Microbiol Biotechnol 71(4):455–462. doi:10.1007/s00253-005-0147-y

    Article  CAS  PubMed  Google Scholar 

  • Palchaudhuri S, Chakrabarty A (1976) Isolation of plasmid deoxyribonucleic-acid from Pseudomonas putida. J Bacteriol 126(1):410–416

    CAS  PubMed Central  PubMed  Google Scholar 

  • Payne JW, Bolton H, Campbell JA, Xun LY (1998) Purification and characterization of EDTA monooxygenase from the EDTA-degrading bacterium BNC1. J Bacteriol 180(15):3823–3827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rheinwald JG, Chakrabarty AM, Gunsalus IC (1973) A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc Natl Acad Sci U S A 70(3):885–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson CR, Sauer RT (1998) Optimizing the stability of single-chain proteins by linker length and composition mutagenesis. Proc Natl Acad Sci U S A 95(11):5929–5934. doi:10.1073/pnas.95.11.5929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serizawa N, Matsuoka T (1991) A 2 component-type cytochrome-P-450 monooxygenase system in a prokaryote that catalyzes hydroxylation of ML-236B to pravastatin, a tissue-selective inhibotor of 3-hydroxy-3-methylglutaryl coenzyme-A reductase. Biochim Biophys Acta 1084(1):35–40. doi:10.1016/0005-2760(91)90052-j

    Article  CAS  PubMed  Google Scholar 

  • Spyrou G, Haggård-Ljungquist E, Krook M, Jörnvall H, Nilsson E, Reichard P (1991) Characterization of the flavin reductase gene (fre) of Escherichia coli and construction of a plasmid for overproduction of the enzyme. J Bacteriol 173(12):3673–3679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor DG, Trudgill PW (1986) Camphor revisited: Studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453. J Bacteriol 165(8):489–497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torres Pazmiño DE, Snajdrova R, Baas B-J, Ghobrial M, Mihovilovic MD, Fraaije MW (2008) Self-sufficient Baeyer–Villiger monooxygenases: effective coenzyme regeneration for biooxygenation by fusion engineering. Angew Chem Int Ed 47:2275–2278. doi:10.1002/anie.200704630

    Article  Google Scholar 

  • Torres Pazmiño DE, Riebel A, de Lange J, Rudroff F, Mihovilovic MD, Fraaije MW (2009) Efficient biooxidations catalyzed by a new generation of self-sufficient Baeyer–Villiger monooxygenases. ChemBioChem 10:2595–2598. doi:10.1002/cbic.200900480

    Article  PubMed  Google Scholar 

  • Trudgill PW, DuBus R, Gunsalus IC (1966) Mixed function oxidation VI. Purification of a tightly coupled electron transport complex in camphor lactonization. J Biol Chem 241(18):4288–90

    CAS  PubMed  Google Scholar 

  • van Berkel WJ, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124(4):670–689

    Article  PubMed  Google Scholar 

  • Villa R, Willetts A (1997) Oxidations by microbial NADH plus FMN-dependent luciferases from Photobacterium phosphoreum and Vibrio fischeri. J Mol Catal B Enzym 2:193–197

    Article  CAS  Google Scholar 

  • Walsh CT, Wencewicz TA (2013) Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat Prod Rep 30(1):175–200. doi:10.1039/c2np20069d

    Article  CAS  PubMed  Google Scholar 

  • Willetts A (1997) Structural studies and synthetic applications of Baeyer–Villiger monooxygenases. Trends Biotechnol 15(2):55–62. doi:10.1016/s0167-7799(97)84204-7

    Article  CAS  PubMed  Google Scholar 

  • Williams DR, Trudgill PW, Taylor DG (1989) Metabolism of 1,8-cineole by a Rhodococcus species: ring cleavage reactions. J Gen Microbiol 135(7):1957–1967. doi:10.1099/00221287-135-7-1957

    CAS  Google Scholar 

  • Zenno S, Saigo K (1994) Identification of the genes encoding NAD(P)H-flavin oxidoreductases that are similar in sequence to Escherichia coli Fre in four species of luminous bacteria: Photorhabdus luminescens, Vibrio fischeri, Vibrio harveyi, and Vibrio orientalis. J Bacteriol 176(12):3544–3551

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the European Research Council (ERC AdG 247014), the Swedish Research Council, the Deutsche Forschungsgemeinschaft (Grant Bo1862/6-1) and the Deutsche Bundesstiftung Umwelt (AZ13234 and AZ20013/231) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe T. Bornscheuer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadow, M., Balke, K., Willetts, A. et al. Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli . Appl Microbiol Biotechnol 98, 3975–3986 (2014). https://doi.org/10.1007/s00253-013-5338-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5338-3

Keywords

Navigation