Skip to main content

Advertisement

Log in

Bioremediation and monitoring of aromatic-polluted habitats

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bioremediation may restore contaminated soils through the broad biodegradative capabilities evolved by microorganisms towards undesirable organic compounds. Understanding bioremediation and its effectiveness is rapidly advancing, bringing available molecular approaches for examining the presence and expression of the key genes involved in microbial processes. These methods are continuously improving and require further development and validation of primer- and probe-based analyses and expansion of databases for alternative microbial markers. Phylogenetic marker approaches provide tools to determine which organisms are present or generally active in a community; functional gene markers provide only information concerning the distribution or transcript levels (deoxyribonucleic acid [DNA]- or messenger ribonucleic acid [mRNA]-based approaches) of specific gene populations across environmental gradients. Stable isotope probing methods offer great potential to identify microorganisms that metabolize and assimilate specific substrates in environmental samples, incorporating usually a rare isotope (i.e., 13C) into their DNA and RNA. DNA and RNA in situ characterization allows the determination of the species actually involved in the processes being measured. DNA microarrays may analyze the expression of thousands of genes in a soil simultaneously. A global analysis of which genes are being expressed under various conditions in contaminated soils will reveal the metabolic status of microorganisms and indicate environmental modifications accelerating bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriano DC, Bollag J-M, Frankenberger WT Jr, Sims RC (1999) Biodegradation of contaminated soils. Agronomy Monograph no. 37. American Society of Agronomy, Crop Science of America, Soil Science Society of America, Madison, WI, 772 pp

    Google Scholar 

  • Al-Bashir B, Cseh T, Leduc R, Samson R (1990) Effect of soil/contaminant interactions on the biodegradation of naphthalene in flooded soil under denitrifying conditions. Appl Environ Biotechnol 34:414–419

    CAS  Google Scholar 

  • Alexander M (2000) Aging, bioavailability and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265

    CAS  Google Scholar 

  • Andersen H, Kaetzke A, Kaempfer P, Ludwig W, Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K-172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 45:327–333

    Google Scholar 

  • Andreoni V, Cavalca L, Rao MA, Nocerino G, Bernasconi S, Dell’ Amico E, Colombo M, Gianfreda L (2004) Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 57:401–412

    CAS  PubMed  Google Scholar 

  • Annweiler E, Michaelis W, Meckenstock RU (2002) Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl Environ Microbiol 68:852–858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arocha MA, Jackman AP, Mccoy BJ (1996) Adsorption kinetics of toluene on soil agglomerates: soil as a biporous sorbent. Environ Sci Technol 30:1500–1507

    CAS  Google Scholar 

  • Atlas RM, Bartha R (1998) Microbial ecology: fundamentals and applications, 4th edn. Benjamin/Cummings, Menlo Park, CA

    Google Scholar 

  • Bakermans C, Madsen EL (2002) Detection in coal tar waste-contaminated groundwater of mRNA transcripts related to naphthalene dioxygenase by fluorescent in situ hybridisation with tyramide signal amplification. J Microbiol Methods 50:75–84

    CAS  PubMed  Google Scholar 

  • Baldwin BR, Nakatsu CH, Nies L (2003) Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl Environ Microbiol 69:3350–3358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barajas-Aceves M, Hassan M, Tinoco R, Vazquez-Duhalt R (2002) Effect of pollutants on the ergosterol content as indicator of fungal biomass. J Microbiol Methods 50:227–236

    CAS  PubMed  Google Scholar 

  • Barraclough D, Kearney T, Croxford A (2005) Bound residues: environmental solution or future problem?. Environ Pollut 133:85–90

    CAS  PubMed  Google Scholar 

  • Bastiaens L, Springael D, Dejonghe W, Wattiau P, Verachtert H, Diels L (2001) A transcriptional luxAB reporter fusion responding to fluorene in Sphingomonas sp. LB126 and its initial characterisation for whole-cell bioreporter purposes. Res Microbiol 152:849–859

    CAS  PubMed  Google Scholar 

  • Beller HR, Ding WH, Reinhard M (1995) Byproducts of anaerobic alkylbenzene metabolism useful as indicators of in situ bioremediation. Environ Sci Technol 29:2864–2869

    CAS  PubMed  Google Scholar 

  • Bèjà O, Koonin EV, Aravind L, Taylor LT, Seitz H, Stein JL, Bensec DC, Feldman RA, Swanson RV, DeLong EF (2002) Comparative genomic analysis of archeal genotypic variants in a single population and into different oceanic provinces. Appl Environ Microbiol 68:335–345

    PubMed  PubMed Central  Google Scholar 

  • Beller HR, Kane SR, Legler TC, Alvarez PJ (2002) A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon degrading bacteria based on a catabolic gene. Environ Sci Technol 36:3977–3984

    CAS  PubMed  Google Scholar 

  • Bewley RF (1996) Field implementation of in situ bioremediation: key physicochemical and biological factors. In: Stotzky G, Bollag J-M (eds) Soil biochemistry. vol. 9. Marcel Dekker, New York, pp 473–543

    Google Scholar 

  • Birman I, Alexander M (1996) Effect of viscosity of nonaqueous-phase liquids (NAPLs) on biodegradation of NAPL constituents. Environ Toxicol Chem 15:1683–1686

    CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    CAS  Google Scholar 

  • Bouchez M, Blanchet D, Vandecasteele JP (1995) Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain association: inhibition phenomena and cometabolism. Appl Microbiol Biotechnol 43:156–164

    CAS  PubMed  Google Scholar 

  • Bouchez T, Patureau D, Dabert P, Juretschko S, Dore J, Delegenes P, Moletta R, Wagner M (2000) Ecological study of bioaugmentation failure. Environ Microbiol 2:179–190

    CAS  PubMed  Google Scholar 

  • Bouwer EJ, Zehnder AJB (1993) Bioremediation of organic compounds—putting microbial metabolism to work. Trends Biotech 11:360–367

    CAS  Google Scholar 

  • Bundy JP, Paton GI, Campbell CD (2002) Microbial communities in different soil types do not converge after diesel contamination. J Appl Microbiol 92:276–288

    CAS  PubMed  Google Scholar 

  • Cavalca L, Dell’Amico E, Andreoni V (2004) Intrinsic bioremediation of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monooxygenase genes. Appl Microbiol Biotechnol 64:576–587

    CAS  PubMed  Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4:331–338

    CAS  Google Scholar 

  • Chakraborty R, Coates JD (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64:437–446

    CAS  PubMed  Google Scholar 

  • Chung N, Alexander M (2002) Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere 48:109–114

    CAS  PubMed  Google Scholar 

  • Coates JD, Philips EJP, Lonergan DJ, Jenter H, Lovley DR (1996) Isolation of Geobacter species from a variety of sedimentary environments. Appl Environ Microbiol 62:1531–1536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daane LL, Harjonio I, Zylstra GJ, Hagblom MM (2001) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl Environ Microbiol 67:2683–2691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dec J, Bollag J-M (1994) Use of plant material for the decontamination of water polluted with phenols. Biotechnol Bioeng 44:1132–1139

    CAS  PubMed  Google Scholar 

  • Dejonghe W, Boon N, Seghers D, Top EM, Verstraete W (2001) Bioaugmentation of soils by increasing microbial richness: missing links. Environ Microbiol 3:649–657

    CAS  PubMed  Google Scholar 

  • Dybas MJ, Barcelona M, Bezborodnikov S, Davies S, Forney L, Heuer H (1998) Pilot-scale evaluation of bioaugmentation for in-situ remediation of a carbon tetrachloride-contaminated aquifer. Environ Sci Technol 32:3598–3611

    CAS  Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek D, Stewart BA (eds) Defining soil quality for a sustainable environment. SSSA Special Publication no. 35. SSSA, Madison, WI, pp 3–21

    Google Scholar 

  • Dorn PB, Salanitro JP (2000) Temporal ecological assessment of oil contaminated soils before and after bioremediation. Chemosphere 40:419–426

    CAS  PubMed  Google Scholar 

  • Dumont MG, Murrell JC (2005) Stable isotope-probing-linking microbial identity to the function. Nat Rev, Microbiol 3:499–504

    CAS  Google Scholar 

  • Edgehill RU (1999) Bioremediation by inoculation with microorganisms. In: Adriano DC, Bollag J-M, Frankenberger WT Jr, Sims RC (eds) Bioremediation of contaminated soils. Agronomy Monograph no. 37. American Society of Agronomy, Crop Science of America, Soil Science Society of America, Madison, WI

    Google Scholar 

  • Efroymson RA, Alexander M (1995) Reduced mineralization of low concentrations of phenanthrene because of sequestering in non-aqueous-phase-liquids. Environ Sci Technol 29:515–521

    CAS  PubMed  Google Scholar 

  • Elshahed MS, Gieg LM, McInerny MJ, Suflita JM (2001) Signature metabolites attesting to the in situ attenuation of alkylbenzenes in anaerobic environments. Environ Sci Technol 35:682–689

    CAS  PubMed  Google Scholar 

  • Eltis LD, Bolin JT (1996) Evolutionary relationships among extradiol dioxygenases. J Bacteriol 178:5930–5937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fahy A, Lethbridge G, Earle R, Ball AS, Timmis KN, McGently TJ (2005) Effects of long-term benzene pollution on bacterial diversity and community structure in groundwater. Environ Microbiol 7:1192–1199

    CAS  PubMed  Google Scholar 

  • Fredrickson JK, Balkwill DL, Romine MF, Shi T (1999) Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.. Ind Microbiol Biotech 23:273–283

    CAS  Google Scholar 

  • Furukawa K, Hirose J, Suyama A, Zaiki T, Hayashida S (1993) Gene components responsible for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon). J Bacteriol 175:5224–5232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galushko A, Minz D, Schino B, Widdel F (1999) Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ Microbiol 1:415–420

    CAS  PubMed  Google Scholar 

  • Gomez GRS, Pandiyan T, Aguilar Iris VE, Luna-Pabello V, Dur An De Bazua C (2004) Spectroscopic determination of poly-aromatic compounds in petroleum contaminated soils. Water Air Soil Pollut 158:137–151

    Google Scholar 

  • Gevao B, Semple KT, Jones KC (2000) Bound pesticide residues in soils: a review. Environ Pollut 108:3–12

    CAS  PubMed  Google Scholar 

  • Gianfreda L, Bollag J-M (2002) Isolated enzyme for the transformation and detoxification of organic pollutants. In: Burns R, Richard D (eds) Enzyme in the environment. Activity, ecology and applications. Marcel Dekker, New York

    Google Scholar 

  • Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354

    CAS  Google Scholar 

  • Gianfreda L, Nannipieri P (2001) Basic principles, agents and feasibility of bioremediation of soil polluted by organic compounds. Minerva Biotecnol 13:5–12

    Google Scholar 

  • Gibson TG, Parales ER (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243

    CAS  PubMed  Google Scholar 

  • Gibson J, Harwood C (2002) Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu Rev Microbiol 56:345–369

    CAS  PubMed  Google Scholar 

  • Ginige MP, Hugenholtz P, Daims H, Wagner M, Keller J, Blackall LL (2004) Use of stable-isotope probing, full cycle rRNA analysis, and fluorescence in situ hybridization–microautoradiography to study a methanol-fed denitrifying microbial community. Appl Environ Microbiol 70:588–596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo C, Suo W, Harsh JB, Ogram A (1997) Hybridization analysis of microbial DNA from fuel oil-contaminated and non contaminated soil. Microb Ecol 34:178–187

    CAS  PubMed  Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    CAS  PubMed  Google Scholar 

  • Hall K, Miller CD, Sorensen DL, Anderson AJ, Sims RC (2005) Development of a catabolically significant genetic probe for polycyclic aromatic hydrocarbon-degrading Mycobacteria in soil. Biodegradation 16:475–484

    CAS  PubMed  Google Scholar 

  • Handelsman J, Liles M, Mann D, Riesenfeld C, Goodman RM (2002) Cloning the metagenome: culture-independent access to the diversity and functions of the uncultivated microbial world. Methods Microbiol 33:241–255

    CAS  Google Scholar 

  • Hankard PK, Svendsen C, Wright J, Wienberg C, Fishwick SK, Spurgeon DJ, Weeks JM (2004) Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis. Sci Total Environ 330:9–20

    CAS  PubMed  Google Scholar 

  • Hanson JR, Macalady JL, Harris D, Scow KM (1999) Linking toluene degradation with specific microbial populations in soils. Appl Environ Microbiol 65:5403–5408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrickx B, Dejonghe W, Boenne W, Brennerova M, Cernik M, Lederer T, Bucheli-Witschel M, Bastiaens L, Verstraete W, Top EM, Diels L, Springael D (2005) Dynamics of oligotrophic bacterial aquifer community during conctat with a groundwater plume contaminated with benzene, toluene, ethylbenzene, and xylenes: an in situ mesocosm study. Appl Environ Microbiol 71:3815–3825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrickx B, Junca H, Vosahlova J, Lindner A, Ruegg I, Faber F, Egli T, Mau M, Schlomann M, Brennerova M, Brenner V, Pieper DH, Top EM, Dejonghe W, Bastiaens L, Springael D (2006) Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. J Microbiol Methods 64:230–265

    Google Scholar 

  • Hoefs J (1997) Stable isotope geochemistry, 4th edn. Springer, Berlin, Germany

    Google Scholar 

  • Huesemann MH, Hausman TS, Fortman TJ (2004) Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation 15:261–274

    CAS  PubMed  Google Scholar 

  • Ihra N, Slet J, Petersell V (2003) Effect of heavy metals and PAH on soil assessed via dehydrogenase assay. Environ Int 28:779–782

    Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92:1–8

    CAS  PubMed  Google Scholar 

  • Jansson JK (2003) Marker and reporter genes: illuminating tools for environmental microbiologists. Curr Opin Microbiol 6:310–316

    CAS  PubMed  Google Scholar 

  • Jeon CO, Park W, Padmanabhan P, DeRito C, Snape JR, Madsen EL (2003) Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci USA 100:13591–13596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juck D, Charles T, White LG, Greer GW (2000) Polyphasic microbial community analysis of petroleum hydrocarbon-contaminated soils from two northern Canadian communities. FEMS Microbiol Ecol 33:241–249

    CAS  PubMed  Google Scholar 

  • Junca H, Pieper DH (2003) Amplified functional DNA restriction analysis to determine catechol 2,3-dioxygenase gene diversity in soil bacteria. J Microbiol Methods 55:697–708

    CAS  PubMed  Google Scholar 

  • Kanaly RA, Bartha R, Watanabe K, Harayama S (2000) Rapid mineralization of benzo [a] pyrene by a microbial consortium growing on diesel fuel. Appl Environ Microbiol 66:4205–4211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AA, Wang RF, Cao WW, Doerge DR, Wennerstrom D, Cerniglia CE (2001) Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strai PYR-1. Appl Environ Microbiol 67:3577–3585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyohara H, Nagao K, Kouno K, Yano K (1982) Phenanthrene degrading phenotype of Alcaligenes faecalis AFK2. Appl Environ Microbiol 43:458–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korda A, Santas P, Tenent A, Santas R (1997) Petroleum hydrocarbon bioremediation: sampling and analytical techniques, in situ treatements and commercial microorganisms currently used. Appl Microbiol Biotechnol 48:677–686

    CAS  PubMed  Google Scholar 

  • Krieger CJ, Beller HR, Reinhard M, Spormann AM (1999) Initial reactions in anaerobic oxidation of m-xylene by the denitrifying bacterium Azoarcus sp. strain T. J Bacteriol 181:6403–6410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MJ, Allen CCR, Kulakov LA, Lipscomb DA (1999) Purification and characterization of a novel naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. J Bacteriol 181:6200–6204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laurie AD, Lloyd-Jones G (1998) The phn genes of Burkholderia sp. RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 181:531–540

    Google Scholar 

  • Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH, Wagner M (1999) Combination of fluorescence in situ hybridisation and microautoradiography—a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leuthner B, Leutwein C, Schulz H, Hort P, Haenhel W, Schiltz E, Schagger H, Heider J (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28:615–628

    CAS  PubMed  Google Scholar 

  • Liles MR, Manske BF, Bintrim SB, Handelsman J, Goodman M (2003) A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl Environ Microbiol 69:2684–2691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16 S rRNA. Appl Environ Microbiol 63:4516–4522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi AT, Jardim WF (1999) Fluorescence spectroscopy of high performance liquid chromatography fractionated marine and terrestrial organic materials. Water Res 33:512–520

    CAS  Google Scholar 

  • Lovley DR (1997) Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. J Ind Microbiol 18:75–81

    CAS  Google Scholar 

  • Lovley DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev, Microbiol 1:35–44

    CAS  Google Scholar 

  • Maila MP, Thomas E, Cloete TE (2005) The use of biological activities to monitor the removal of fuel contaminants—perspective for monitoring hydrocarbon contamination: a review. Int Biodeterior Biodegrad 55:1–8

    CAS  Google Scholar 

  • Maliszewska-Kordybach B, Smreczak B (2003) Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environ Int 28:719–728

    CAS  PubMed  Google Scholar 

  • Manefield M, Whiteley AS, Ostle N, Ineson P, Bailey MJ (2002) Technical considerations for RNA-based stable isotope probing: an approach to associating microbial diversity with microbial community function. Rapid Commun Mass Spectrom 16:2179–2183

    CAS  PubMed  Google Scholar 

  • Margesin R, Walder G, Schinner F (2003a) Bioremediation assessment of a BTEX-contaminated soil. Acta Biotechnol 23:29–36

    CAS  Google Scholar 

  • Margesin R, Labbè D, Schinner F, Greer CW, Whyte LG (2003b) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl Environ Microbiol 69:3085–3092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marlowe EM, Wang JM, Pepper IL, Mayer RM (2002) Application of a reverse transcription-PCR assay to monitor regulation of the catabolic nahAc gene during phenanthrene degradation. Biodegradation 13:251–260

    CAS  PubMed  Google Scholar 

  • Massol-Deya A, Weller R, Rios-Hernandez L, Zhou JZ, Hickey RF, Tiedje JM (1997) Succession and convergence of biofilm communities in fixed-film reactors treating aromatic hydrocarbons in groundwater. Appl Environ Microbiol 63:270–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B (2000) Anaerobic naphthalene degradation by a sulphate-reducing enrichment culture. Appl Environ Microbiol 66:2743–2747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Megharaj M, Singleton I, McClure NC, Naidu R (2000) Influence of petroleum hydrocarbon contamination and microbial activities in a long-term contaminated soil. Arch Environ Contam Toxicol 38:439–445

    CAS  PubMed  Google Scholar 

  • Mesarch MB, Nakatsu CH, Nies L (2000) Development of catechol 2,3-dioxigenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Appl Environ Microbiol 66:678–683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer S, Moser R, Neef A, Stahl V, Kampfer P (1999) Differential detection of key enzymes of polyaromatic hydrocarbon-degrading bacteria using PCR and gene probes. Microbiology 145:1731–1741

    CAS  PubMed  Google Scholar 

  • Mueller JG, Lantz SE, Devereux R, Berg JD, Pritchard PH (1994) Studies on the microbial ecology of polycyclic aromatic hydrocarbon biodegradation. In: Hinche RE, Semprini L, Ong SK (eds) Bioremediation of chlorinated and PAH compounds. Lewis, Florida, pp 218–230

    Google Scholar 

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S ribosomal RNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Yashuda S, Ozaki Y, Noda I (2000) Two-dimensional fluorescence correlation spectroscopy. I. Analysis of polynuclear aromatic hydrocarbons in cyclohexane solutions. J Phys Chem A 104:9113–9120

    CAS  Google Scholar 

  • Orphan VJ, Hinrichs KU, McKeegan KD, De-Long EF (2001) Methane-consuming archea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:485–487

    Google Scholar 

  • Palsson B (2000) The challenges of in silico biology. Nat Biotechnol 18:1147–1150

    CAS  PubMed  Google Scholar 

  • Pelz O, Chatzinotas A, Zarda-Hess A, Abraham W-R, Zeyer J (2001) Tracing toluene-assimilating sulphate-reducing bacteria using 13C-incorporation in fatty acids and whole-cell hybridisation. FEMS Microbiol Ecol 38:123–131

    CAS  Google Scholar 

  • Płaza G, Nałecz-Jawecki G, Ulfig K, Brigmon RL (2005) The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere 59:289–296

    PubMed  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–32

    CAS  PubMed  Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediment-a perspective mechanism, consequences and assessment. Environ Pollut 108:103–112

    CAS  PubMed  Google Scholar 

  • Reineke W (1998) Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu Rev Microbiol 52:287–331

    CAS  PubMed  Google Scholar 

  • Rhee S-K, Liu X, Wu L, Chong SC, Wan X, Zhou J (2004) Detection of genes involved in biodegradation and biotrasformation in microbial communities by using 50-mer oligonucletide microarrays. Appl Environ Microbiol 70:4303–4317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richnow HH, Annweiler E, Michaelis W, Meckenstock RU (2003) Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation. J Contam Hydrol 65:101–120

    CAS  PubMed  Google Scholar 

  • Ringelberg DB, Talley JW, Perkins EJ, Tucker SG, Luthy RG, Bouwer ET, Frederickson HL (2001) Succession of phenotypic, genotypic and metabolic community characteristics during in vitro bioslurry treatment of polycyclic aromatic hydrocarbon-contaminated sediments. Appl Environ Microbiol 67:1542–1550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roling WFM, Milner MG, Jones DE, Lee K, Daniel F, Swannell RJP, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68:5537–5548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Loiacono KA, Lynch BA, MacNeil IA, Minor C (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossel D, Tarradellas J, Bitton G, Morel J-L (1997) Use of enzymes in soil ecotoxycology: a case for dehydrogenase and hydrolytic enzymes. In: Tarradellas J, Bitton G, Rossel D (eds) Soil ecotoxycology. CRC, Boca Raton, FL, pp 179–206

    Google Scholar 

  • Sabatè J, Marc Vinas M, Solanas AM (2006) Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil. Chemosphere 63:1648–1659

    PubMed  Google Scholar 

  • Saito A, Iwabuchi T, Harayama S (1999) Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides spp.KP7. Chemosphere 38:1331–1337

    CAS  PubMed  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbon: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    CAS  PubMed  Google Scholar 

  • Saterbak A, Toy RJ, Wong DC, Mc Main BJ, Williams MP, Dorn PB, Brzuzy LP, Chai EY, Salanitro JP (1999) Ecotoxicological and analytical assessment of hydrocarbon-contaminated soils and application to ecological risk assessment. Environ Toxicol Chem 18:1591–1607

    CAS  Google Scholar 

  • Sayler GS, Layton AC (1990) Environmental application of nucleic acid hybridisation. Annu Rev Microbiol 44:625–648

    CAS  PubMed  Google Scholar 

  • Sayler GS, Fleming JT, Nivens DE (2001) Gene expression monitoring in soils by mRNA analysis and gene lux fusions. Curr Opin Biotechnol 12:455–460

    CAS  PubMed  Google Scholar 

  • Sebat JL, Colwell FS, Crawford RL (2003) Metagenomic profiling: microarray analysis of an environmental genomic library. Appl Environ Microbiol 69:4927–4934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scelza R, Rao MA, Gianfreda L (2007) Effects of compost and bacterial cells on decontamination and chemical and biological properties of an agricultural soil artificially contaminated with phenanthrene. Soil Biol Biochem 39:1303–1317

    CAS  Google Scholar 

  • Schonhuber W, Arda B, Eix S, Rippka R, Herdman M, Ludwig W, Amann R (1999) In situ identification of cyanobacteria with horseradish peroxidase-labeled, rRNA-tageted oligonucleotides probes. Appl Environ Microbiol 65:1259–1267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz E, Trinh SV, Scow KN (2000) Measuring growth of a phenanthrene-degrading bacterial inoculum in soil with a quantitative competitive polymerase chain reaction method. FEMS Microbiol Ecol 34:1–7

    CAS  PubMed  Google Scholar 

  • Scullion J (2006) Remediating polluted soils. Naturwissenschaften 93:51–56

    CAS  PubMed  Google Scholar 

  • Shi Y, Zwolinski ME, Schreiber ME, Bahr JM, Sewell GW, Hickey WJ (1999) Molecular analysis of microbial community structures in pristine and contaminated aquifers: field and laboratory microcosm experiments. Appl Environ Microbiol 65:2143–2150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siciliano SD, Germida JJ (1998) Mechanism of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79

    CAS  Google Scholar 

  • Sotsky JB, Greer CW, Atlas RM (1994) Frequency of genes in aromatic and aliphatic hydrocarbon biodegradation pathways within bacterial populations from Alaskan sediments. Can J Microbiol 40:981–985

    CAS  PubMed  Google Scholar 

  • Spormann AM, Widdel F (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105

    CAS  PubMed  Google Scholar 

  • Stapleton RD, Sayler G (2000) Changes in subsurface catabolic gene frequencies during natural attenuation of petroleum hydrocarbons. Environ Sci Technol 34:1991–1999

    CAS  Google Scholar 

  • Stapleton RD, Ripp S, Jimenez L, Cheol-Koh S, Fleming JT, Gregory IR, Sayler GS (1998) Nucleic acid analytical approaches in bioremediation: site assessment and characterization. J Microbiol Methods 32:165–178

    CAS  Google Scholar 

  • Steffan RJ, Atlas RM (1991) Polymerase chain reaction: application in environmental microbiology. Annu Rev Microbiol 45:137–161

    CAS  PubMed  Google Scholar 

  • Stiner L, Halverson LJ (2002) Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl Environ Microbiol 68:1962–1971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stotzky G (1986) Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. In: Huang PM, Schnitzer M (eds) Interaction of soil minerals with natural organics and microbes. vol. 17. Soil Science Society of America, Madison, WI, pp 305–375

    Google Scholar 

  • Suzuki M, Rappe MS, Giovannoni SJ (1998) Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl Environ Microbiol 64:4522–4529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson IP, van der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7:909–915

    Google Scholar 

  • Torres E, Bustos-Jaimes I, La Borgne S (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal, B Environ 46:1–7

    CAS  Google Scholar 

  • Wattiau P, Springael D, Agathos SN, Wuertz S (2002) Use of the pAL5000 replicon in PAH-degrading mycobacteria: application for strain labeling and promoter probing. Appl Microbiol Biotechnol 59:700–705

    CAS  PubMed  Google Scholar 

  • Wellington EMH, Berry A, Krsek M (2003) Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr Opin Microbiol 6:295–301

    CAS  PubMed  Google Scholar 

  • Weissenfel W, Klewer HJ, Langhoff J (1992) Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl Microbiol Biotechnol 36:689–696

    Google Scholar 

  • Whyte LG, Bourbonnière L, Bellerose C, Greer CW (1999) Bioremediation assessment of hydrocarbon-contaminated soils from the High Arctic. Biorem J 3:69–79

    CAS  Google Scholar 

  • Whyte LG, Schultz A, van Bailen JB, Luz AP, Pellizari V, Labbè D, Greer CW (2002) Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:141–150

    CAS  PubMed  Google Scholar 

  • Williams PA, Sayers JR (1994) The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation 5:195–217

    CAS  PubMed  Google Scholar 

  • Williams PA, Jones RM, Shaw LE (2002) A third transposable element, ISPpu12, from the toluene-xylene catabolic plasmid PWWO of Pseudomonas putida mt-2. J Bacteriol 184:6572–6580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Thomson DK, Liu X, Fields MW, Bagwell CE, Tiedje JM, Zhou J-Z (2004) Development and evaluation of microarray-based whole-genoma hybridization for detection of microorganisms within the context of environmental applications. Environ Sci Technol 38:6775–6782

    CAS  PubMed  Google Scholar 

  • Yang Y, Zeyer J (2003) Specific detection of Dehalococcoides species by fluorescence in situ hybridisation with 16 S rRNA-targeted oligonucleotides probes. Appl Environ Microbiol 69:2879–2883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young LY, Phelps CD (2005) Metabolic biomarkers for monitoring in situ anaerobic hydrocarbon degradation. Environ Health Perspect 113:62–67

    CAS  PubMed  Google Scholar 

  • Zhang X, Sullivan ER, Young LY (2000) Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium. Biodegradation 11:117–124

    CAS  PubMed  Google Scholar 

  • Zhou J-Z (2003) Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol 6:288–294

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Ministero dell’Università e della Ricerca, Italy, Programmi di Interesse Nazionale PRIN 2004–2005 and Piano Nazionale Biotecnologie Vegetali, Research Area “Useful Microorganisms”, MIPA, Italy. DiSSPA Contribution no. 145

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Gianfreda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreoni, V., Gianfreda, L. Bioremediation and monitoring of aromatic-polluted habitats. Appl Microbiol Biotechnol 76, 287–308 (2007). https://doi.org/10.1007/s00253-007-1018-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1018-5

Keywords

Navigation