Skip to main content

Advertisement

Log in

Vertical migration of aggregated aerobic and anaerobic ammonium oxidizers enhances oxygen uptake in a stagnant water layer

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ammonium can be removed as dinitrogen gas by cooperating aerobic and anaerobic ammonium-oxidizing bacteria (AerAOB and AnAOB). The goal of this study was to verify putative mutual benefits for aggregated AerAOB and AnAOB in a stagnant freshwater environment. In an ammonium fed water column, the biological oxygen consumption rate was, on average, 76 kg O2 ha−1 day−1. As the oxygen transfer rate of an abiotic control column was only 17 kg O2 ha−1 day−1, biomass activity enhanced the oxygen transfer. Increasing the AnAOB gas production increased the oxygen consumption rate with more than 50% as a result of enhanced vertical movement of the biomass. The coupled decrease in dissolved oxygen concentration increased the diffusional oxygen transfer from the atmosphere in the water. Physically preventing the biomass from rising to the upper water layer instantaneously decreased oxygen and ammonium consumption and even led to the occurrence of some sulfate reduction. Floating of the biomass was further confirmed to be beneficial, as this allowed for the development of a higher AerAOB and AnAOB activity, compared to settled biomass. Overall, the results support mutual benefits for aggregated AerAOB and AnAOB, derived from the biomass uplifting effect of AnAOB gas production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeliovich A (1987) Nitrifying bacteria in waste-water reservoirs. Appl Environ Microbiol 53:754–760

    Article  CAS  Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena. Wiley, New York

    Google Scholar 

  • Bodelier PLE, Libochant JA, Blom C, Laanbroek HJ (1996) Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats. Appl Environ Microbiol 62:4100–4107

    Article  CAS  Google Scholar 

  • Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol 156:457–464

    Article  CAS  Google Scholar 

  • deGraaf AAV, deBruijn P, Robertson LA, Jetten MSM, Kuenen JG (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology-Uk 142:2187–2196

    Article  Google Scholar 

  • Egli K, Fanger U, Alvarez PJJ, Siegrist H, van der Meer JR, Zehnder AJB (2001) Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol 175:198–207

    Article  CAS  Google Scholar 

  • Furukawa K, Lieu PK, Tokitoh H, Fujii T (2006) Development of single-stage nitrogen removal using anammox and partial nitritation (SNAP) and its treatment performances. Water Sci Technol 53:83–90

    Article  CAS  Google Scholar 

  • Gelda RK, Auer MT, Effler SW, Chapra SC, Storey ML (1996) Determination of reaeration coefficients: whole-lake approach. J Environ Eng-Asce 122:269–275

    Article  CAS  Google Scholar 

  • Greenberg AE, Clesceri LS, Eaton AD (1992) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  • Hastings RC, Saunders JR, Hall GH, Pickup RW, McCarthy AJ (1998) Application of molecular biological techniques to a seasonal study of ammonia oxidation in a eutrophic freshwater lake. Appl Environ Microbiol 64:3674–3682

    Article  CAS  Google Scholar 

  • Helmer-Madhok C, Schmid M, Filipov E, Gaul T, Hippen A, Rosenwinkel KH, Seyfried CF, Wagner M, Kunst S (2002) Deammonification in biofilm systems: population structure and function. Water Sci Technol 46:223–231

    Article  CAS  Google Scholar 

  • Jones ML, Liehr SK, Classen JJ, Robarge W (2000) Mechanisms of dinitrogen gas formation in anaerobic lagoons. Adv Environ Res 4:133–139

    Article  Google Scholar 

  • Kalyuzhnyi S, Gladchenko M, Mulder A, Versprille B (2006) DEAMOX—new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Water Res 40:3637–3645

    Article  CAS  Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529

    Article  CAS  Google Scholar 

  • Kuai LP, Verstraete W (1998) Ammonium removal by the oxygen-limited autotrophic nitrification–denitrification system. Appl Environ Microbiol 64:4500–4506

    Article  CAS  Google Scholar 

  • Laanbroek HJ, Gerards S (1993) Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradskyi grown in mixed continuous cultures. Arch Microbiol 159:453–459

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM (2006) Brock biology of microorganisms, 11th edn. Prentice hall upper saddle river

  • Manconi I, van der Maas P, Lens PNL (2006) Effect of sulfur compounds on biological reduction of nitric oxide in aqueous Fe(II)EDTA(2-) solutions. Nitric Oxide-Biology and Chemistry 15:40–49

    Article  CAS  Google Scholar 

  • Marquez AL, Wild G, Midoux N (1994) A review of recent chemical techniques for the determination of the volumetric mass-transfer coefficient K(L)a in gas-liquid reactors. Chem Eng Process 33:247–260

    Article  CAS  Google Scholar 

  • Meyer RL, Risgaard-Petersen N, Allen DE (2005) Correlation between anammox activity and microscale distribution of nitrite in a subtropical mangrove sediment. Appl Environ Microbiol 71:6142–6149

    Article  CAS  Google Scholar 

  • Pauer JJ, Auer MT (2000) Nitrification in the water column and sediment of a hypereutrophic lake and adjoining river system. Water Res 34:1247–1254

    Article  CAS  Google Scholar 

  • Penton CR, Devol AH, Tiedje JM (2006) Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl Environ Microbiol 72:6829–6832

    Article  CAS  Google Scholar 

  • Philips S, Wyffels S, Sprengers R, Verstraete W (2002) Oxygen-limited autotrophic nitrification/denitrification by ammonia oxidisers enables upward motion towards more favourable conditions. Appl Microbiol Biotechnol 59:557–566

    Article  CAS  Google Scholar 

  • Pynaert K, Smets BF, Wyffels S, Beheydt D, Siciliano SD, Verstraete W (2003) Characterization of an autotrophic nitrogen-removing biofilm from a highly loaded lab-scale rotating biological contactor. Appl Environ Microbiol 69:3626–3635

    Article  CAS  Google Scholar 

  • Pynaert K, Smets BF, Beheydt D, Verstraete W (2004) Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition. Environ Sci Technol 38:1228–1235

    Article  CAS  Google Scholar 

  • Ro KS, Hunt PG (2006) A new unified equation for wind-driven surficial oxygen transfer into stationary water bodies. Tr ASABE 49:1615–1622

    Article  Google Scholar 

  • Ro KS, Hunt PG, Poach ME (2006) Wind-driven surficial oxygen transfer and dinitrogen gas emission from treatment lagoons. J Environ Sci Health Part A—Toxic/Hazardous Substances & Environ Eng 41:1627–1638

    Article  CAS  Google Scholar 

  • Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers MMM (2006) Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol 8:1857–1863

    Article  CAS  Google Scholar 

  • Sears K, Alleman JE, Barnard JL, Oleszkiewiez JA (2004) Impacts of reduced sulfur components on active and resting ammonia oxidizers. J Ind Microbiol Biotechnol 31:369–378

    Article  CAS  Google Scholar 

  • Smorczewski WT, Schmidt EL (1991) Numbers, activities, and diversity of autotrophic ammonia-oxidizing bacteria in a fresh-water, eutrophic lake sediment. Can J Microbiol 37:828–833

    Article  Google Scholar 

  • Stief P, De Beer D, Neumann D (2002) Small-scale distribution of interstitial nitrite in freshwater sediment microcosms: The role of nitrate and oxygen availability, and sediment permeability. Microb Ecol 43:367–378

    Article  CAS  Google Scholar 

  • Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol 50:589–596

    Article  CAS  Google Scholar 

  • Third KA, Sliekers AO, Kuenen JG, Jetten MSM (2001) The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: Interaction and competition between three groups of bacteria. Syst Appl Microbiol 24:588–596

    Article  CAS  Google Scholar 

  • Trimmer M, Nicholls JC, Deflandre B (2003) Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom. Appl Environ Microbiol 69:6447–6454

    Article  CAS  Google Scholar 

  • Vlaeminck SE, Geets J, Vervaeren H, Boon N, Verstraete W (2007) Reactivation of aerobic and anaerobic ammonium oxidizers in OLAND biomass after long-term storage. Appl Microbiol Biotechnol, in press, DOI https://doi.org/10.1007/s00253-006-0770-2

    Article  CAS  Google Scholar 

  • Watt GW, Chrisp JD (1952) Spectrophotometric method for determination of hydrazine. Anal Chem 24:2006–2008

    Article  CAS  Google Scholar 

  • Wett B (2006) Solved upscaling problems for implementing deammonification of rejection water. Water Sci Technol 53:121–128

    Article  CAS  Google Scholar 

  • Whitby CB, Saunders JR, Pickup RW, McCarthy AJ (2001) A comparison of ammonia-oxidiser populations in eutrophic and oligotrophic basins of a large freshwater lake. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 79:179–188

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by a PhD grant (aspirant) for Siegfried E. Vlaeminck from the Fund of Scientific Research-Flanders (Fonds voor Wetenschappelijk Onderzoek (FWO) Vlaanderen). The authors gratefully thank Greet Van de Velde for technical support and Peter De Schryver, Ilse Forrez, and Bram Pauwels for the many critical and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Verstraete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlaeminck, S.E., Dierick, K., Boon, N. et al. Vertical migration of aggregated aerobic and anaerobic ammonium oxidizers enhances oxygen uptake in a stagnant water layer. Appl Microbiol Biotechnol 75, 1455–1461 (2007). https://doi.org/10.1007/s00253-007-0944-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0944-6

Keywords

Navigation