Skip to main content
Log in

Functional interactions between residues in the S1, S4, and S5 domains of Kv2.1

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The voltage-gated potassium channel subunit Kv2.1 forms heterotetrameric channels with the silent subunit Kv6.4. Chimeric Kv2.1 channels containing a single transmembrane segment from Kv6.4 have been shown to be functional. However, a Kv2.1 chimera containing both S1 and S5 from Kv6.4 was not functional. Back mutation of individual residues in this chimera (to the Kv2.1 counterpart) identified four positions that were critical for functionality: A200V and A203T in S1, and T343M and P347S in S5. To test for possible interactions in Kv2.1, we used substitutions with charged residues and tryptophan for the outermost pair 203/347. Combinations of substitutions with opposite charges at both T203 and S347 were tolerated but resulted in channels with altered gating kinetics, as did the combination of negatively charged aspartate substitutions. Double mutant cycle analysis with these mutants indicated that both residues are energetically coupled. In contrast, replacing both residues with a positively charged lysine together (T203K + S347K) was not tolerated and resulted in a folding or trafficking deficiency. The nonfunctionality of the T203K + S347K mutation could be restored by introducing the R300E mutation in the S4 segment of the voltage sensor. These results indicate that these specific S1, S4, and S5 residues are in close proximity and interact with each other in the functional channel, but are also important determinants for Kv2.1 channel maturation. These data support the view of an anchoring interaction between S1 and S5, but indicate that this interaction surface is more extensive than previously proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–d
Fig. 3
Fig. 4a, b
Fig. 5a–d

Similar content being viewed by others

References

  • Anderson CL, Delisle BP, Anson BD, Kilby JA, Will ML, Tester DJ, Gong Q, Zhou Z, Ackerman MJ, January CT (2006) Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 113:365–373

    Article  PubMed  CAS  Google Scholar 

  • Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80:555–592

    PubMed  CAS  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Durell SR, Shrivastava IH, Guy HR (2004) Models of the structure and voltage-gating mechanism of the shaker K+ channel. Biophys J 87:2116–2130

    Article  PubMed  CAS  Google Scholar 

  • Gandhi CS, Isacoff EY (2002) Molecular models of voltage sensing. J Gen Physiol 120:455–463

    Article  PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X (2005) International Union of Pharmacology LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 57:473–508

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch Eur J Physiol 391:85–100

    Article  CAS  Google Scholar 

  • Heginbotham L, Lu Z, Abramson T, MacKinnon R (1994) Mutations in the K+ channel signature sequence. Biophys J 66:1061–1067

    Article  PubMed  CAS  Google Scholar 

  • Hong KH, Miller C (2000) The lipid-protein interface of a Shaker K(+) channel. J Gen Physiol 115:51–58

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41

    Article  PubMed  CAS  Google Scholar 

  • Labro AJ, Raes AL, Grottesi A, Van HD, Sansom MS, Snyders DJ (2008) Kv channel gating requires a compatible S4–S5 linker and bottom part of S6, constrained by non-interacting residues. J Gen Physiol 132:667–680

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Banerjee A, MacKinnon R (2009) Two separate interfaces between the voltage sensor and pore are required for the function of voltage-eependent K(+) channels. PLoS Biol 7:e47

    Article  PubMed  Google Scholar 

  • Li-Smerin Y, Hackos DH, Swartz KJ (2000a) A localized interaction surface for voltage-sensing domains on the pore domain of a K+ channel. Neuron 25:411–423

    Article  PubMed  CAS  Google Scholar 

  • Li-Smerin Y, Hackos DH, Swartz KJ (2000b) Alpha-helical structural elements within the voltage-sensing domains of a K(+) channel. J Gen Physiol 115:33–50

    Article  PubMed  CAS  Google Scholar 

  • Long SB, Campbell EB, MacKinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article  PubMed  CAS  Google Scholar 

  • Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450:376–382

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Klem AM, Ramu Y (2002) Coupling between voltage sensors and activation gate in voltage-gated K+ channels. J Gen Physiol 120:663–676

    Article  PubMed  CAS  Google Scholar 

  • Mildvan AS, Weber DJ, Kuliopulos A (1992) Quantitative interpretations of double mutations of enzymes. Arch Biochem Biophys 294:327–340

    Article  PubMed  CAS  Google Scholar 

  • Ottschytsch N, Raes A, Van Hoorick D, Snyders DJ (2002) Obligatory heterotetramerization of three previously uncharacterized Kv channel alpha-subunits identified in the human genome. Proc Natl Acad Sci USA 99:7986–7991

    Article  PubMed  CAS  Google Scholar 

  • Ottschytsch N, Raes AL, Timmermans JP, Snyders DJ (2005) Domain analysis of Kv6.3, an electrically silent channel. J Physiol 568:737–747

    Article  PubMed  CAS  Google Scholar 

  • Paulussen A, Raes A, Matthijs G, Snyders DJ, Cohen N, Aerssens J (2002) A novel mutation (T65P) in the PAS domain of the human potassium channel HERG results in the long QT syndrome by trafficking deficiency. J Biol Chem 277:48610–48616

    Article  PubMed  CAS  Google Scholar 

  • Phillips LR, Swartz KJ (2010) Position and motions of the S4 helix during opening of the Shaker potassium channel. J Gen Physiol 136:629–644

    Article  PubMed  CAS  Google Scholar 

  • Royal DC, Bianchi L, Royal MA, Lizzio M Jr, Mukherjee G, Nunez YO, Driscoll M (2005) Temperature-sensitive mutant of the Caenorhabditis elegans neurotoxic MEC-4(d) DEG/ENaC channel identifies a site required for trafficking or surface maintenance. J Biol Chem 280:41976–41986

    Article  PubMed  CAS  Google Scholar 

  • Soler-Llavina GJ, Chang TH, Swartz KJ (2006) Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel. Neuron 52:623–634

    Article  PubMed  CAS  Google Scholar 

  • Swiatecka-Urban A, Brown A, Moreau-Marquis S, Renuka J, Coutermarsh B, Barnaby R, Karlson KH, Flotte TR, Fukuda M, Langford GM, Stanton BA (2005) The short apical membrane half-life of rescued ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR) results from accelerated endocytosis of ΔF508-CFTR in polarized human airway epithelial cells. J Biol Chem 280:36762–36772

    Article  PubMed  CAS  Google Scholar 

  • Tiwari-Woodruff SK, Schulteis CT, Mock AF, Papazian DM (1997) Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits. Biophys J 72:1489–1500

    Article  PubMed  CAS  Google Scholar 

  • Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56

    Google Scholar 

  • Yifrach O, MacKinnon R (2002) Energetics of pore opening in a voltage-gated k(+) channel. Cell 111:231–239

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Gong Q, January CT (1999) Correction of defective protein trafficking of a mutant HERG potassium channel in human long QT syndrome. Pharmacological and temperature effects. J Biol Chem 274:31123–31126

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Tessa de Block, Carole Faghel, Evy Mayeur, and Tine Bruyns for their excellent technical assistance, and Adam Raes for helpful discussions in the early phase of this study. This work was supported by the ‘Fonds voor Wetenschappelijk Onderzoek Vlaanderen’ Grants FWO-G.0152.06, FWO-1.5.055.08, and FWO-G.0449.11; the IAP6/31 grant of the Interuniversity Attraction Poles Program–Belgian State–Belgian Science Policy; a concerted research project Grant BOF-GOA 2004 of the University of Antwerp; and a BOF-TOP08 project of the University of Antwerp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Snyders.

Additional information

E. Bocksteins and N. Ottschytsch contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocksteins, E., Ottschytsch, N., Timmermans, JP. et al. Functional interactions between residues in the S1, S4, and S5 domains of Kv2.1. Eur Biophys J 40, 783–793 (2011). https://doi.org/10.1007/s00249-011-0694-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-011-0694-3

Keywords

Navigation