Skip to main content
Log in

Heterotrophic Bacteria Dominate the Diazotrophic Community in the Eastern Indian Ocean (EIO) during Pre-Southwest Monsoon

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The diazotrophic communities play an important role in sustaining primary productivity through adding new nitrogen to oligotrophic marine ecosystems. Yet, their composition in the oligotrophic Indian Ocean is poorly understood. Here, we report the first observation of phylogenetic diversity and distribution of diazotrophs in the Eastern Indian Ocean (EIO) surface water (to 200 m) during the pre-southwest monsoon period. Through high throughput sequencing of nifH genes, we identified diverse groups of diazotrophs in the EIO including both non-cyanobacterial and cyanobacterial phylotypes. Proteobacteria (mainly Alpha-, Beta-, and Gamma-proteobacteria) were the most diverse and abundant groups within all the diazotrophs, which accounted for more than 86.9% of the total sequences. Cyanobacteria were also retrieved, and they were dominated by the filamentous non-heterocystous cyanobacteria Trichodesmium spp. Other cyanobacteria such as unicellular diazotrophic cyanobacteria were detected sporadically. Interestingly, our qPCR analysis demonstrated that the depth-integrated gene abundances of the diazotrophic communities exhibited spatial heterogeneity with Trichodesmium spp. appeared to be more abundant in the Bay of Bengal (p < 0.05), while Sagittula castanea (Alphaproteobacteria) was found to be more dominating in the equatorial region and offshores (p < 0.05). Non-metric multidimensional scaling analysis (NMDS) further confirmed distinct vertical and horizontal spatial variations in the EIO. Canonical correspondence analysis (CCA) indicated that temperature, salinity, and phosphate were the major environmental factors driving the distribution of the diazotroph communities. Overall, our study provides the first insight into the diversity and distribution of the diazotrophic communities in EIO. The findings from this study highlight distinct contributions of both non-cyanobacteria and cyanobacteria to N2 fixation. Moreover, our study reveals information that is critical for understanding spatial heterogeneity and distribution of diazotrophs, and their vital roles in nitrogen and carbon cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12:196–206. https://doi.org/10.4319/lo.1967.12.2.0196

    Article  CAS  Google Scholar 

  2. Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19:162–173. https://doi.org/10.1016/j.tim.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  3. Gradoville MR, Bombar D, Crump BC, Letelier RM, Zehr JP, White AE (2017) Diversity and activity of nitrogen-fixing communities across ocean basins. Limnol Oceanogr 62:1895–1909. https://doi.org/10.1002/lno.10542

    Article  Google Scholar 

  4. Levitan O, Rosenberg G, Setlik I et al (2007) Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. Glob Chang Biol 13:531–538. https://doi.org/10.1111/j.1365-2486.2006.01314.x

    Article  Google Scholar 

  5. Benavides M, Voss M (2015) Five decades of N2 fixation research in the North Atlantic Ocean. Front Mar Sci 2:1–40. https://doi.org/10.3389/fmars.2015.00040

    Article  Google Scholar 

  6. Yang L, Wang DX, Huang J, Wang X, Zeng L, Shi R, He Y, Xie Q, Wang S, Chen R, Yuan J, Wang Q, Chen J, Zu T, Li J, Sui D, Peng S (2015) Toward a mesoscale hydrological and marine meteorological observation network in the South China Sea. Bull Am Meteorol Soc 96(7):1117–1135. https://doi.org/10.1175/BAMS-D-14-00159.1

    Article  Google Scholar 

  7. Carpenter EJ, Subramaniam A, Capone DG (2004) Biomass and primary productivity of the cyanobacterium Trichodesmium spp. in the tropical N Atlantic Ocean. Deep-Sea Res I 51:173–203. https://doi.org/10.1016/j.dsr.2003.10.006

    Article  CAS  Google Scholar 

  8. Sohm JA, Webb EA, Capone DG (2011) Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol 9(7):499–508. https://doi.org/10.1038/nrmicro2594

    Article  CAS  PubMed  Google Scholar 

  9. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554. https://doi.org/10.1046/j.1462-2920.2003.00451.x

    Article  CAS  PubMed  Google Scholar 

  10. Zehr JP, Mellon MT, Zani S (1998) New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes. Appl Environ Microbiol 64:3444–3450

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kong LL, Jing HM, Kataoka T, Sun J, Liu H (2011) Phylogenetic diversity and spatio-temporal distribution of nitrogenase genes (nifH) in the northern South China Sea. Aquat Microb Ecol 65(1):15–27. https://doi.org/10.3354/ame01531

    Article  Google Scholar 

  12. Monteiro FM, Follows MJ, Dutkiewicz S (2010) Distribution of diverse nitrogen fixers in the global ocean. Glob Biogeochem Cycles 24:GB3017. https://doi.org/10.1029/2009GB003731

    Article  CAS  Google Scholar 

  13. Cheung SY, Suzuki K, Saito H, Umezawa Y, Xia X, Liu H (2017) Highly heterogeneous diazotroph communities in the Kuroshio current and the Tokara Strait, Japan. PLoS One 12(10):e0186875. https://doi.org/10.1371/journal.pone.0186875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shiozaki T, Ijichi M, Kodama T, Takeda S, Furuya K (2014) Heterotrophic bacteria as major nitrogen fixers in the euphotic zone of the Indian Ocean. Glob Biogeochem Cycles 28:1096–1110. https://doi.org/10.1002/2014GB004886

    Article  CAS  Google Scholar 

  15. Moisander PH, Serros T, Paerl RW, Beinart RA, Zehr JP (2014) Gammaproteobacterial diazotrophs and nifH gene expression in surface waters of the South Pacific Ocean. ISME J 8(10):1962–1973. https://doi.org/10.1038/ismej.2014.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bombar D, Paerl RW, Riemann L (2016) Marine non-cyanobacterial diazotrophs: moving beyond molecular detection. Trends Microbiol 24(11):916–927. https://doi.org/10.1016/j.tim.2016.07.002

    Article  CAS  PubMed  Google Scholar 

  17. Schott FA, Xie SP, McCreary JP (2009) Indian ocean circulation and climate variability. Rev Geophys 47(1):RG1002. https://doi.org/10.1029/2007RG000245

    Article  Google Scholar 

  18. Wang J, Kan JJ, Zhang XD et al (2017) Archaea dominate the ammonia-oxidizing community in deep-sea sediments of the Eastern Indian Ocean-from the equator to the Bay of Bengal. Front Microbiol 8:1–16. https://doi.org/10.3389/fmicb.2017.00415

    Article  Google Scholar 

  19. Singh A, Jani RA, Ramesh R (2010) Spatiotemporal variations of the δ18O-salinity relation in the northern Indian Ocean. Deep-Sea Res I 57(11):1422–1431. https://doi.org/10.1016/j.dsr.2010.08.002

    Article  CAS  Google Scholar 

  20. Singh A, Ramesh R (2015) Environmental controls on new and primary production in the northern Indian Ocean. Prog Oceanogr 131(3):138–145. https://doi.org/10.1016/j.pocean.2014.12.006

    Article  Google Scholar 

  21. Lévy M, Shankar D, André JM, Shenoi SSC, Durand F, de Boyer Montégut C (2009) Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms. J Geophys Res Oceans 112:C12014. https://doi.org/10.1029/2007JC004090

    Article  CAS  Google Scholar 

  22. Gomes HR, Goes JI, Saino T (2000) Influence of physical processes and freshwater discharge on the seasonality of phytoplankton regime in the Bay of Bengal. Cont Shelf Res 20:313–330. https://doi.org/10.1016/S0278-4343(99)00072-2

    Article  Google Scholar 

  23. Kumar SP, Muraleedharan PM, Prasad TG et al (2002) Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea? Geophys Res Lett 29(24):2235–3770. https://doi.org/10.1002/2016JC012639

    Article  CAS  Google Scholar 

  24. Madhupratap M, Gauns M, Ramaiah N et al (2003) Biogeochemistry of the Bay of Bengal: physical, chemical and primary productivity characteristics of the central and western Bay of Bengal during summer monsoon. Deep-Sea Res II 50(5):881–896. https://doi.org/10.1016/S0967-0645(02)00611-2

    Article  CAS  Google Scholar 

  25. Hegde S, Anil AC, Patil JS et al (2008) Influence of environmental settings on the prevalence of Trichodesmium spp. in the Bay of Bengal. Mar Ecol Prog Ser 356(01):93–101. https://doi.org/10.3354/meps07259

    Article  Google Scholar 

  26. Gandhi N, Singh A, Prakash S, Ramesh R, Raman M, Sheshshayee MS, Shetye S (2011) First direct measurements of N2 fixation during a Trichodesmium bloom in the eastern Arabian Sea. Glob Biogeochem Cycles 25:GB4014. https://doi.org/10.1029/2010GB003970

    Article  CAS  Google Scholar 

  27. Ahmed A, Gauns M, Kurian S (2017) Nitrogen fixation rates in the eastern Arabian Sea. Estuar Coast Shelf Sci 191:74–83. https://doi.org/10.1016/j.ecss.2017.04.005

    Article  CAS  Google Scholar 

  28. Bird C, Wyman M (2012) Transcriptionally active heterotrophic diazotrophs are widespread in the upper water column of the Arabian Sea. FEMS Microbiol Ecol 84(1):189–200. https://doi.org/10.1111/1574-6941.12049

    Article  CAS  PubMed  Google Scholar 

  29. Kitajima S, Furuya K, Hashihama F, Takeda S, Kanda J (2009) Latitudinal distribution of diazotrophs and their nitrogen fixation in the tropical and subtropical western North Pacific. Limnol Oceanogr 54(2):537–547. https://doi.org/10.4319/lo.2009.54.2.0537

    Article  CAS  Google Scholar 

  30. Shiozaki T, Bombar D, Riemann L, Hashihama F, Takeda S, Yamaguchi T, Ehama M, Hamasaki K, Furuya K (2017) Basin scale variability of active diazotrophs and nitrogen fixation in the North Pacific, from the tropics to the subarctic Bering Sea. Glob Biogeochem Cycles 31(6):996–1009. https://doi.org/10.1002/2017GB005681

    Article  CAS  Google Scholar 

  31. Church MJ, Mahaffey C, Letelier RM, Lukas R, Zehr JP, Karl DM (2009) Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific subtropical gyre. Glob Biogeochem Cycles 23:GB2020. https://doi.org/10.1029/2008GB003418

    Article  CAS  Google Scholar 

  32. Benavides M, Moisander PH, Daley MC, Bode A, Arístegui J (2016) Longitudinal variability of diazotroph abundances in the subtropical North Atlantic Ocean. J Plankton Res 38(3):662–672. https://doi.org/10.1093/plankt/fbv121

    Article  CAS  Google Scholar 

  33. Goebel NL, Turk KA, Achilles KM, Paerl R, Hewson I, Morrison AE, Montoya JP, Edwards CA, Zehr JP (2010) Abundance and distribution of major groups of diazotrophic cyanobacteria and their potential contribution to N2 fixation in the tropical Atlantic Ocean. Environ Microbiol 12(12):3272–3289. https://doi.org/10.1111/j.1462-2920.2010.02303.x

    Article  CAS  PubMed  Google Scholar 

  34. Shiozaki T, Nagata T, Ijichi M (2015) Nitrogen fixation and the diazotroph community in the temperate coastal region of the northwestern North Pacific. Biogeosciences 12:4751–4764. https://doi.org/10.5194/bg-12-4751-2015

    Article  Google Scholar 

  35. Foster RA, Subramaniam A, Mahaffey C (2007) Influence of the Amazon River plume on distributions of free-living and symbiotic cyanobacteria in the western tropical North Atlantic Ocean. Limnol Oceanogr 52(2):517–532. https://doi.org/10.4319/lo.2007.52.2.0517

    Article  CAS  Google Scholar 

  36. . Grasshoff K, Ehrhardt M, Kremling K (1982) Methods of seawater analysis. ISBN (Verlag Chemie), 3– 527, 25,998–26,008

  37. Schmidt TM, Delong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173:4371–4378. https://doi.org/10.1128/jb.173.14.4371-4378.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kan JJ, Clingenpeel S, Macur RE et al (2011) Archaea in Yellowstone Lake. ISME J 5(11):1784–1795. https://doi.org/10.1038/ismej.2011.56

    Article  CAS  Google Scholar 

  39. Zhang Y, Yang Q, Ling J et al (2017) Diversity and structure of diazotrophic communities in mangrove rhizosphere, revealed by high-throughput sequencing. Front Microbiol 8(2032). https://doi.org/10.3389/fmicb.2017.02032

  40. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Magoč T, Salzberg SL (2010) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  Google Scholar 

  42. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123. https://doi.org/10.1111/j.1462-2920.2009.02051.x

    Article  CAS  PubMed  Google Scholar 

  44. Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143. https://doi.org/10.1186/gb-2007-8-7-r143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  47. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17(3):377–386. https://doi.org/10.1101/gr.5969107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Letunic I, Bork P (2011) Interactive tree of life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39:475–478. https://doi.org/10.1093/nar/gkr201

    Article  CAS  Google Scholar 

  51. Zhang Y, Zhao ZH, Sun J (2011) Diversity and distribution of diazotrophic communities in the South China Sea deep basin with mesoscale cyclonic eddy perturbations. FEMS Microbiol Ecol 78(3):417–427. https://doi.org/10.1111/j.1574-6941.2011.01174.x

    Article  CAS  PubMed  Google Scholar 

  52. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07-0, URL http://www.R-project.org. Accessed 31 Oct 2016

  53. Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547. https://doi.org/10.1890/11-1952.1

    Article  PubMed  Google Scholar 

  54. Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (hill numbers). Methods Ecol Evol 7:1451–1456. https://doi.org/10.1111/2041-210X.12613

    Article  Google Scholar 

  55. . Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. Marine Laboratory, Plymouth, UK, pp 190

  56. ter Braak CJF, Šmilauer P (2002) Canoco for Windows, version 4.5. Biometris-Plant Research International, Wageningen

    Google Scholar 

  57. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Book  Google Scholar 

  58. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14(6):927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x

    Article  Google Scholar 

  59. Schlitzer R (2018) Ocean data view. https://odv.awi.de. Accessed 19 May 2018

  60. Martínez-Pérez C, Mohr W, Schwedt A, Dürschlag J, Callbeck CM, Schunck H, Dekaezemacker J, Buckner CRT, Lavik G, Fuchs BM, Kuypers MMM (2018) Metabolic versatility of a novel N2-fixing Alphaproteobacterium isolated from a marine oxygen minimum zone. Environ Microbiol 20(2):755–768. https://doi.org/10.1111/1462-2920.14008

    Article  CAS  PubMed  Google Scholar 

  61. Riemann L, Farnelid H, Steward GF (2010) Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity and regulation in marine waters. Aquat Microb Ecol 61:235–247. https://doi.org/10.3354/ame01431

    Article  Google Scholar 

  62. Farnelid H, Andersson AF, Bertilsson S, al-Soud WA, Hansen LH, Sørensen S, Steward GF, Hagström Å, Riemann L (2011) Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria. PLoS One 6(4):e19223. https://doi.org/10.1371/journal.pone.0019223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bentzon-Tilia M, Traving SJ, Mantikci M, Knudsen-Leerbeck H, Hansen JLS, Markager S, Riemann L (2015) Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries. ISME J 9(2):273–285. https://doi.org/10.1038/ismej.2014.119

    Article  CAS  PubMed  Google Scholar 

  64. Delmont TO, Quince C, Shaiber A et al (2018) Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol 3:804–813. https://doi.org/10.1038/s41564-018-0176-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Halm H, Lam P, Ferdelman TG, Lavik G, Dittmar T, LaRoche J, D'Hondt S, Kuypers MMM (2012) Heterotrophic organisms dominate nitrogen fixation in the South Pacific Gyre. ISME J 6(6):1238–1249. https://doi.org/10.1038/ismej.2011.182

    Article  CAS  PubMed  Google Scholar 

  66. Duan YL, Liu L, Han G, Liu H, Yu W, Yang G, Wang H, Wang H, Liu Y, Zahid, Waheed H (2016) Anomalous behaviors of Wyrtki Jets in the equatorial Indian Ocean during 2013. Sci Rep 6:29688. https://doi.org/10.1038/srep29688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Qian G, Wang J, Kan JJ, Zhang X, Xia Z, Zhang X, Miao Y, Sun J (2018) Diversity and distribution of anammox bacteria in water column and sediments of the Eastern Indian Ocean. Int Biodeterior Biodegrad 133:52–62. https://doi.org/10.1016/j.ibiod.2018.05.015

    Article  CAS  Google Scholar 

  68. Rahav E, Giannetto MJ, Bar-Zeev (2016) Contribution of mono and polysaccharides to heterotrophic N2 fixation at the eastern Mediterranean coastline. Sci Rep 6:27858. https://doi.org/10.1038/srep27858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moisander PH, Zhang RF, Boyle EA, Hewson I, Montoya JP, Zehr JP (2012) Analogous nutrient limitations in unicellular diazotrophs and Prochlorococcus in the South Pacific Ocean. ISME J 6:733–744. https://doi.org/10.1038/ismej.2011.152

    Article  CAS  PubMed  Google Scholar 

  70. Loescher CR, GroβKopf T, Desai FD et al (2014) Facets of diazotroph in the oxygen minimum zone waters off Peru. ISME J 8(11):2180–2192. https://doi.org/10.1038/ismej.2014.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grand MM, Measures CI, Hatta M, Hiscock WT, Buck CS, Landing WM (2015) Dust deposition in the eastern Indian Ocean: the ocean perspective from Antarctica to the Bay of Bengal. Glob Biogeochem Cycles 29(3):357–374. https://doi.org/10.1002/2014GB004898

    Article  CAS  Google Scholar 

  72. Grand MM, Measures CI, Hatta M, Hiscock WT, Landing WM, Morton PL, Buck CS, Barrett PM, Resing JA (2015) Dissolved Fe and Al in the upper 1000 m of the eastern Indian Ocean: a high-resolution transect from the Antarctic margin to the bay of Bengal. Glob Biogeochem Cycles 29(3):375–396. https://doi.org/10.1002/2014GB004920

    Article  CAS  Google Scholar 

  73. He Q, Zhan H, Shuai Y (2017) Phytoplankton bloom triggered by an anticyclonic eddy: the combined effect of eddy-Ekman pumping and winter mixing. J Geophys Res-Oceans 122:4886–4901. https://doi.org/10.1002/2017JC012763

    Article  Google Scholar 

  74. Jyothibabu R, Karnan C, Jagadeesan L, Arunpandi N, Pandiarajan RS, Muraleedharan KR, Balachandran KK (2017) Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal. Mar Pollut Bull 121(1–2):201–215. https://doi.org/10.1016/j.marpolbul.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  75. Wu C, Fu FX, Sun J et al (2018) Nitrogen fixation by Trichodesmium and unicellular diazotrophs in the northern South China Sea and the Kuroshio in summer. Sci Rep 8(2415). https://doi.org/10.1038/s41598-018-20743-0

  76. Cabello AM, Cornejo-Castillo FM, Raho N, Blasco D, Vidal M, Audic S, de Vargas C, Latasa M, Acinas SG, Massana R (2016) Global distribution and vertical patterns of a prymnesiophyte–cyanobacteria obligate symbiosis. ISME J 10(3):693–706. https://doi.org/10.1038/ismej.2015.147

    Article  PubMed  Google Scholar 

  77. Stenegren M, Caputo A, Berg C, Bonnet S, Foster RA (2018) Distribution and drivers of symbiotic and free-living diazotrophic cyanobacteria in the Western Tropical South Pacific. Biogeosciences 15(5):1559–1578. https://doi.org/10.5194/bg-15-1559-2018

    Article  CAS  Google Scholar 

  78. Cornejo-Castillo FM, Cabello AM, Salazar G, Sánchez-Baracaldo P, Lima-Mendez G, Hingamp P, Alberti A, Sunagawa S, Bork P, de Vargas C, Raes J, Bowler C, Wincker P, Zehr JP, Gasol JM, Massana R, Acinas SG (2016) Cyanobacterial symbionts diverged in the late cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton. Nat Commun 7:11071. https://doi.org/10.1038/ncomms11071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Turk-Kubo KA, Farnelid HM, Shilova IN, Henke B, Zehr JP (2016) Distinct ecological niches of marine symbiotic N2-fixing cyanobacterium Candidatus atelocyanobacterium thalassa sublineages. J Phycol 53(2):451–461. https://doi.org/10.1111/jpy.12505

    Article  CAS  Google Scholar 

  80. Fu FX, Yu E, Garcia NS, Gale J, Luo Y, Webb EA, Hutchins DA (2014) Differing responses of marine N2-fixers to warming and consequences for future diazotroph community structure. Aquat Microb Ecol 72:33–46. https://doi.org/10.3354/ame01683

    Article  Google Scholar 

  81. Heiniger EK, Oda Y, Samanta SK, Harwood CS (2012) How posttranslational modification of nitrogenase is circumvented in Rhodopseudomonas palustris strains that produce hydrogen gas constitutively. Appl Environ Microbiol 78:1023–1032. https://doi.org/10.1128/AEM.07254-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dongxiao Wang from South China Sea Institute of Oceanology, Chinese Academy of Sciences for providing hydrographic (CTD) data. Dr. Liangliang Kong at McGill University and Dr. Xiaomin Xia at the Hong Kong University of Science and Technology are also acknowledged for their help and technical support during experiments. We also gratefully acknowledge the crew of R/V “Shiyan 3” and all participants for their assistance during the cruise.

Funding

This study was supported by the National Natural Science Foundation of China (41876134, 41276124, and 41676112) and NSFC open research cruises (NORC2017-10), the Science Fund for University Creative Research Groups in Tianjin (TD12-5003), the Changjiang Scholar Program of Chinese Ministry of Education to JS, and endowment support from Stroud Water Research Center to JK.

Author information

Authors and Affiliations

Authors

Contributions

This work was designed by JS. Samples were collected by CW, HL, and XW. CW performed experiments and analyzed data. CG performed the nutrients analysis. CW drafted the paper and revised by JK and PL. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Jun Sun.

Electronic Supplementary Material

Fig. S1

Depth profiles of dissolved inorganic nutrients (nitrate, nitrite, ammonium, phosphate, silicate) and Chl a in the EIO (PNG 5281 kb)

High resolution image

(TIF 1530 kb)

Fig. S2

Rarefaction curves comparing the number of reads with the number of phylotypes (OTUs) found in the DNA libraries in the EIO. The last digit represented water depth: 1, 2 and 3 represent 0m, 75m and 200m, respectively. (PNG 1240 kb)

High resolution image

(TIF 2708 kb)

Supplementary Table 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Kan, J., Liu, H. et al. Heterotrophic Bacteria Dominate the Diazotrophic Community in the Eastern Indian Ocean (EIO) during Pre-Southwest Monsoon. Microb Ecol 78, 804–819 (2019). https://doi.org/10.1007/s00248-019-01355-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01355-1

Keywords

Navigation