Skip to main content

Advertisement

Log in

On the Viscoelastic Mixtures of Solids

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper we analyze an homogeneous and isotropic mixture of viscoelastic solids. We propose conditions to guarantee the coercivity of the internal energy and also of the dissipation, first in dimension two and later in dimension three. We obtain an uniqueness result for the solutions when the dissipation is positive and without any hypothesis over the internal energy. When the internal energy and the dissipation are both positive, we prove the existence of solutions as well as their analyticity. Exponential stability and impossibility of localization of the solutions are immediate consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Truesdell, C., Toupin, R.A.: The classical field theories. In: Flügge, s (ed.) Handbuch der Physik, vol. 3. Springer, Berlin (1960)

    Google Scholar 

  2. Kelly, P.: A reacting continuum. Int. J. Eng. Sci. 2, 129–153 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eringen, A.C., Ingram, J.D.: A continuum theory of chemically reacting media—I. Int. J. Eng. Sci. 3, 197–212 (1965)

    Article  Google Scholar 

  4. Ingram, J.D., Eringen, A.C.: A continuum theory of chemically reacting media—II. Constitutive equations of reacting fluids mixtures. Int. J. Eng. Sci. 4, 289–322 (1967)

    Article  Google Scholar 

  5. Green, A.E., Naghdi, P.M.: A dynamical theory of interacting continua. Int. J. Eng. Sci. 3, 231–241 (1965)

    Article  MathSciNet  Google Scholar 

  6. Green, A.E., Naghdi, P.M.: A note on mixtures. Int. J. Eng. Sci. 6, 631–635 (1968)

    Article  Google Scholar 

  7. Müller, I.: A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 28, 1–39 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dunwoody, N., Müller, I.: A thermodynamic theory of two chemically reacting ideal gases with different temperatures. Arch. Ration. Mech. Anal. 29, 344–369 (1968)

    Article  MathSciNet  Google Scholar 

  9. Bowen, R.M., Wiese, J.C.: Diffusion in mixtures of elastic material. Int. J. Eng. Sci. 7, 689–722 (1969)

    Article  MATH  Google Scholar 

  10. Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. III, pp. 3–120. Academic, New York (1976)

    Google Scholar 

  11. Atkin, R.J., Craine, R.E.: Continuum theories of mixtures. Basic theory and historical development. Q. J. Mech. Appl. Math. 29, 209–245 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Atkin, R.J., Craine, R.E.: Continuum theories of mixtures. Applications. IMA J. Appl. Math. 17, 153–207 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bedford, A., Drumhelles, D.S.: Theory of immiscible and structured mixtures. Int. J. Eng. Sci. 21, 153–207 (1983)

    Article  Google Scholar 

  14. Samohyl, I.: Thermodynamics of Irreversible Processes in Fluid Mixtures. Teubner Verlag, Leipzig (1987)

    MATH  Google Scholar 

  15. Rajagopal, K.R., Tao, L.: Mechanics of Mixtures. World Scientific, Singapore (1995)

    Book  MATH  Google Scholar 

  16. Eringen, A.C.: Micropolar mixture theory of porous media. J. Appl. Phys. 94, 4184–4190 (2003)

    Article  Google Scholar 

  17. Eringen, A.C.: A mixture theory for geophysical fluids. Nonlinear Process. Geophys. 11, 75–82 (2004)

    Article  Google Scholar 

  18. Marinov, P.: Toward a thermoviscoelastic theory of two component materials. J. Appl. Phys. 16, 533–555 (1978)

    MATH  Google Scholar 

  19. McCarthy, M.F., Tiersten, H.F.: A theory of viscoelastic composites modeled as interpretating solid continua with memory. Arch. Ration. Mech. Anal. 81, 21–51 (1983)

    Article  MATH  Google Scholar 

  20. Hills, R.N., Roberts, P.H.: Relaxation effects in a mixed phase region. J. Nonequilib. Thermodyn. 12, 169–181 (1987)

    MATH  Google Scholar 

  21. Hills, R.N., Roberts, P.H.: On the formulation of diffusive mixture theories for 2-phase regions. J. Eng. Math. 22, 93–100 (1988)

    Article  MathSciNet  Google Scholar 

  22. Aboudi, J.: Micromechanical modelling of finite viscoelastic multiphase composites. J. Appl. Math. Phys. 51, 114–134 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Ieşan, D., Quintanilla, R.: On a theory of interacting continua with memory. J. Therm. Stress. 25, 1161–1178 (2002)

    Article  MathSciNet  Google Scholar 

  24. Alves, M.S., Muñoz Rivera, J.E., Quintanilla, R.: Exponential decay in thermoelastic mixture of solids. Int. J. Solids Struct. 46, 1659–1666 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Muñoz Rivera, J.E., Naso, M.G., Quintanilla, R.: Decay of solutions for a mixture of thermoelastic one dimensional solids. Comput. Math. Appl. 66, 263–277 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Muñoz Rivera, J.E., Naso, M.G., Quintanilla, R.: Decay of solutions for a mixture of thermoelastic solids with different temperatures. Comput. Math. Appl. 71(4), 991–1009 (2016)

    Article  MathSciNet  Google Scholar 

  27. Quintanilla, R.: Existence and exponential decay in the linear theory of viscoelastic mixtures. Eur. J. Mech. A 24, 311–324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ieşan, D., Quintanilla, R.: A theory of porous thermoviscoelastic mixtures. J. Therm. Stress. 30, 693–714 (2007)

    Article  MathSciNet  Google Scholar 

  29. Sigillito, V.G.: Explicit a Priori Inequalities with Applications to Boundary Value Problems. Pitman Publishing, London (1977)

    MATH  Google Scholar 

  30. Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Chapman and Hall/CRC, Boca Raton (1999)

    MATH  Google Scholar 

Download references

Acknowledgements

The work of J. R. Fernández was supported by the Ministerio de Economía and Competitividad under the Research Project MTM2015-66640-P (with the participation of FEDER). The work of A. Magaña and R. Quintanilla is supported by Projects “Análisis Matemático de las Ecuaciones en Derivadas Parciales de la Termomecánica” (MTM2013-42004-P) and “Análisis Matemático de Problemas de la Termomecánica” (MTM2016-74934-P), (AEI/FEDER, UE) of the Spanish Ministry of Economy and Competitiveness. We thank Professor D. Ieşan for his useful comments and an anonymous referee for helping us to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Magaña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, J.R., Magaña, A., Masid, M. et al. On the Viscoelastic Mixtures of Solids. Appl Math Optim 79, 309–326 (2019). https://doi.org/10.1007/s00245-017-9439-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-017-9439-8

Keywords

Navigation