Skip to main content
Log in

Boundary Asymptotic Analysis for an Incompressible Viscous Flow: Navier Wall Laws

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

We consider a new way of establishing Navier wall laws. Considering a bounded domain Ω of R N, N=2,3, surrounded by a thin layer Σ ε , along a part Γ2 of its boundary Ω, we consider a Navier-Stokes flow in Ω∪Ω∪Σ ε with Reynolds’ number of order 1/ε in Σ ε . Using Γ-convergence arguments, we describe the asymptotic behaviour of the solution of this problem and get a general Navier law involving a matrix of Borel measures having the same support contained in the interface Γ2. We then consider two special cases where we characterize this matrix of measures. As a further application, we consider an optimal control problem within this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Buttazzo, G.: Reinforcement problem in the calculus of variations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3, 273–284 (1986)

    MathSciNet  MATH  Google Scholar 

  2. Achdou, Y., Pironneau, O.: Domain decomposition and wall laws. C. R. Acad. Sci., Paris, Sér. I 320(5), 541–547 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Achdou, Y., Pironneau, O., Valentin, F.: Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147(1), 187–218 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buttazzo, G., Dal Maso, G., Mosco, U.: Asymptotic Behavior for Dirichlet Problems in Domains Bounded by Thin Layers. Partial Differential Equations and the Calculus of Variations, Essays in Honor of Ennio De Giorgi, pp. 193–249. Birkhäuser, Boston (1989)

    Google Scholar 

  5. Dal Maso, G.: On the integral representation of certain local functionals. Ric. Mat. 32, 85–113 (1983)

    MathSciNet  MATH  Google Scholar 

  6. Dal Maso, G.: An Introduction to Γ-Convergence. Progress in NonLinear Differential Equations and Applications, vol. 8. Birkhäuser, Basel (1993)

    Google Scholar 

  7. Dal Maso, G., Mosco, U.: Wiener criteria and energy decay for relaxed Dirichlet problems. Arch. Ration. Mech. Anal. 95, 345–387 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dal Maso, G., Mosco, U.: Wiener’s criterion and Γ-convergence. Appl. Math. Optim. 15, 15–63 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dal Maso, G., Defranceschi, A., Vitali, E.: Integral representation for a class of C 1-convex functionals. J. Math. Pures Appl., IX. Sér. 73(1), 1–46 (1994)

    MathSciNet  MATH  Google Scholar 

  10. De Giorgi, E., Franzoni, T.: Su un tipo di convergenza variationale. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 58, 842–850 (1975)

    MATH  Google Scholar 

  11. Esposito, P., Riey, G.: Asymptotic behaviour of thin insulation problem. J. Convex Anal. 10(2), 379–388 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Landau, L.D., Lifschitz, E.M.: Physique Théorique Tome 6 : Mécanique des Fluides, 2nd edn. Editions Mir, Moscou (1989)

    Google Scholar 

  13. Jäger, W., Mikelic, A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170(1), 96–122 (2001)

    Article  MATH  Google Scholar 

  14. Marusic-Paloka, E.: Average of the Navier’s law on the rapidly oscillating boundary. J. Math. Anal. Appl. 259(2), 685–701 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  16. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

    Google Scholar 

  17. Ziemer, W.P.: Weakly Differentiable Functions. Springer, Berlin (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Jarroudi, M., Brillard, A. Boundary Asymptotic Analysis for an Incompressible Viscous Flow: Navier Wall Laws. Appl Math Optim 57, 371–400 (2008). https://doi.org/10.1007/s00245-007-9026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-007-9026-5

Keywords

Navigation