Skip to main content
Log in

Birth-and-Death Evolution of the Cecropin Multigene Family in Drosophila

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Cecropins are insect antibacterial peptides that are part of the insect humoral immune response and could, therefore, be potential targets of natural selection. In Drosophila, the Cec genes constitute a multigene family whose members are arranged in tandem. The complete Cec family was isolated in two obscura group species: D. subobscura and D. pseudoobscura. The chromosomal regions encompassing the Cec genes were subsequently sequenced and mapped by in situ hybridization. In D. pseudoobscura, as in species of the D. melanogaster complex and in D. virilis, the Cec genes constitute a single cluster with five genes. In D. subobscura, unlike in the rest of the species, the eight members of the family are split into two clusters located in different parts of the same chromosome. Remarkable differences in levels of divergence were observed between copies in both species. The genomic organization and the phylogenetic relationships among members of this family in the genus Drosophila indicate (i) that the presence of two clusters is the derived state of the family, (ii) repeated gene duplication within species, (iii) nonfunctionalization and loss of some Cec copies, and (iv) the presence of both highly divergent and highly similar copies within species. These features are better explained by the birth-and-death model of molecular evolution, which posits that the high instability of the Cec multigene family in Drosophila is simply determined by the duplication rate and the subsequent loss of duplicated loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • M Aguadé (1988) ArticleTitleNucleotide sequence comparison of the rp49 gene region between Drosophila subobscura and D. melanogaster Mol Biol Evol 5 443–441

    Google Scholar 

  • PM Bingham R Levis GM Rubin (1981) ArticleTitleCloning of DNA sequences from white locus of D. melanogaster by a novel and general method Cell 25 693–704

    Google Scholar 

  • CB Burge S Karling (1998) ArticleTitleFinding the genes in genomic DNA Curr Opin Struct Biol 8 346–354 Occurrence Handle10.1016/S0959-440X(98)80069-9 Occurrence Handle1:CAS:528:DyaK1cXks1egu78%3D Occurrence Handle9666331

    Article  CAS  PubMed  Google Scholar 

  • AG Clark L Wang (1997) ArticleTitleMolecular population genetics of Drosophila immune system genes Genetics 147 713–724 Occurrence Handle1:CAS:528:DyaK2sXmslOqs7g%3D Occurrence Handle9335607

    CAS  PubMed  Google Scholar 

  • A Date Y Satta N Takahata SI Chigusa (1998) ArticleTitleEvolutionary history and mechanism of the Drosophila cecropin gene family Immunogenetics 47 417–429

    Google Scholar 

  • J Devereux P Haeberli O Smithies (1984) ArticleTitleA comprehensive set of sequence analysis programs for VAX Nucleic Acid Res 12 387–395

    Google Scholar 

  • Y Engström (1997) Insect immune gene regulation PT Brey D Hultmark (Eds) Molecular mechanisms of immune responses in insects Chapman & Hall London 211–244

    Google Scholar 

  • Z Gu LM Steinmetz X Gu C Scharfe RW Davis WH Li (2003) ArticleTitleRole of duplicate genes in genetic robustness against null mutations Nature 421 63–66

    Google Scholar 

  • GH Gudmundsson DA Lidholm B Asling R Gan HG Boman (1991) ArticleTitleThe cecropin locus. Cloning and expression of a gene cluster encoding three antibacterial peptides in Hyalophora cecropia J Biol Chem 266 11510–11517

    Google Scholar 

  • S Henikoff (1984) ArticleTitleUnidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing Gene 28 351–359

    Google Scholar 

  • C Hetru D Hoffmann P Bulet (1997) Antimicrobial peptides from insects PT Brey D Hultmark (Eds) Molecular mechanisms of immune responses in insects Chapman & Hall London 40–66

    Google Scholar 

  • JA Hoffmann (2003) ArticleTitleThe immune response of Drosophila Nature 426 33–38 Occurrence Handle1:CAS:528:DC%2BD3sXoslSjtLg%3D Occurrence Handle14603309

    CAS  PubMed  Google Scholar 

  • D Hultmark (1993) ArticleTitleImmune reactions in Drosophila and other insects: A model for innate immunity Trends Genet 9 178–183

    Google Scholar 

  • TH Jukes CR Cantor (1969) Evolution of protein molecules HW Munro (Eds) Mammalian protein metabolism Academic Press New York 21–120

    Google Scholar 

  • DA Kimbrell (1991) ArticleTitleInsect antibacterial proteins: not just for insects and against bacteria BioEssays 13 657–662

    Google Scholar 

  • S Kumar K Tamura IB Jakobsen M Nei (2001) MEGA2: Molecular evolutionary genetics analysis software Arizona State University Tempe

    Google Scholar 

  • E Kunze-Mühl E Müller (1958) ArticleTitleWeitere untersuchungen über die chomosomale struktur und die natürlinchen strukturtypen von Drosophila subobsura Coll. Chromosoma 9 559–570

    Google Scholar 

  • P Kylsten C Samakolis D Hultmark (1990) ArticleTitleThe cecropin locus in Drosophila; A compact gene cluster involved in the response to infection EMBO J 9 217–224

    Google Scholar 

  • BP Lazzaro AG Clark (2003) ArticleTitleMolecular population genetics of inducible antibacterial peptide genes in Drosophila melanogaster Mol Biol Evol 20 914–923 Occurrence Handle10.1093/molbev/msg109 Occurrence Handle1:CAS:528:DC%2BD3sXkvFCgtbw%3D Occurrence Handle12716986

    Article  CAS  PubMed  Google Scholar 

  • BP Lazzaro BK Sceurman AG Clark (2004) ArticleTitleGenetic basis of natural variation in D. melanogaster antibacterial immunity Science 303 1873–1876

    Google Scholar 

  • M Lynch (2002) ArticleTitleGenomics. Gene duplication and evolution Science 297 945–947 Occurrence Handle1:CAS:528:DC%2BD38Xmt1ClsL8%3D Occurrence Handle12169715

    CAS  PubMed  Google Scholar 

  • M Lynch JS Conery (2000) ArticleTitleThe evolutionary fate and consequences of duplicate genes Science 290 1151–1155 Occurrence Handle10.1126/science.290.5494.1151 Occurrence Handle1:CAS:528:DC%2BD3cXotVChsb8%3D Occurrence Handle11073452

    Article  CAS  PubMed  Google Scholar 

  • M Lynch JS Conery (2003) ArticleTitleThe origins of genome complexity Science 302 1401–1404 Occurrence Handle10.1126/science.1089370 Occurrence Handle1:CAS:528:DC%2BD3sXptVGjsrs%3D Occurrence Handle14631042

    Article  CAS  PubMed  Google Scholar 

  • WP Maddison DR Maddison (1995) MacClade Sinauer Associates Sunderland, MA

    Google Scholar 

  • EB Montgomery B Charlesworth CH Langley (1987) ArticleTitleA test for the role of natural selection in the stabilization of transposable element copy number in a population of D. melanogaster Genet Res 49 31–41

    Google Scholar 

  • HJ Muller (1940) Bearings of the Drosophila work on systematics J Huxley (Eds) New systematics Clarendon Press Oxford 185–268

    Google Scholar 

  • M Nei AL Hughes (1992) Balanced polymorphism and evolution by the birth-and-death process in the MHC loci K Tsuji M Aizawa T Sasazuli (Eds) HLA 1991. Proceedings of the 11th Histocompatibility Workshop and Conference, vol 2 Oxford University Press Oxford 27–38

    Google Scholar 

  • M Nei X Gu T Sitnikova (1997) ArticleTitleEvolution by birth-and-death process in multigene families of the vertebrate immune system Proc Natl Acad Sci USA 94 7799–7806 Occurrence Handle10.1073/pnas.94.15.7799 Occurrence Handle1:CAS:528:DyaK2sXksl2nsbg%3D Occurrence Handle9223266

    Article  CAS  PubMed  Google Scholar 

  • T Ohta (1980) Evolution and variation of multigene families Springer Berlin

    Google Scholar 

  • T Ohta (1994) ArticleTitleFurther examples of evolution by gene duplication revealed though DNA sequence comparisons Genetics 138 1331–1337

    Google Scholar 

  • T Ota M Nei (1994) ArticleTitleDivergent evolution and evolution by the birth-and-death process in the immunoglobulin VH gene family Mol Biol Evol 11 469–482 Occurrence Handle1:CAS:528:DyaK2cXktVOjurk%3D Occurrence Handle8015440

    CAS  PubMed  Google Scholar 

  • DA Petrov YC Chao EC Stephenson DL Hartl (1998) ArticleTitlePseudogene evolution in Drosophila suggests a high rate of DNA loss Mol Biol Evol 15 1562–1567

    Google Scholar 

  • JR Powell R DeSalle (1995) Drosophila molecular phylogenies and their uses MK Hecht RJ Macintyre MT Clegg (Eds) Evolutionary Biology, vol 28 Plenum New York 87–138

    Google Scholar 

  • S Ramos-Onsins M Aguadé (1998) ArticleTitleMolecular evolution of the Cecropin multigene family in Drosophila. Functional genes vs. pseudogenes Genetics 150 157–171 Occurrence Handle1:CAS:528:DyaK1cXmtFKgsr8%3D Occurrence Handle9725836

    CAS  PubMed  Google Scholar 

  • J Rozas R Rozas (1999) ArticleTitleDnaSp version 3: An integrated program for molecular population genetics and molecular evolution analysis Bioinformatics 15 174–175 Occurrence Handle10.1093/bioinformatics/15.2.174 Occurrence Handle1:CAS:528:DyaK1MXisVOksrY%3D Occurrence Handle10089204

    Article  CAS  PubMed  Google Scholar 

  • CA Russo N Takezaki M Nei (1995) ArticleTitleMolecular phylogeny and divergence times of drosophilid species Mol Biol Evol 12 391–404

    Google Scholar 

  • C Samakovlis DA Kimbrell P Kylsten A Engström D Hultmark (1990) ArticleTitleThe immune response in Drosophila: pattern of Cecropin expression and biological activity EMBO J 9 2969–2976

    Google Scholar 

  • J Sambrook EF Fritsch T Maniatis (1989) Molecular cloning. A laboratory manual Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY

    Google Scholar 

  • F Sanger S Nicklen AR Coulson (1977) ArticleTitleDNA sequencing with chain-terminating inhibitors Proc Natl Acad Sci USA 74 5463–5467 Occurrence Handle1:CAS:528:DyaE1cXhtlaru7Y%3D Occurrence Handle271968

    CAS  PubMed  Google Scholar 

  • SA Sawyer (1989) ArticleTitleStatistical tests for detecting gene conversion Mol Biol Evol 6 526–538

    Google Scholar 

  • SA Sawyer DL Hartl (1992) ArticleTitlePopulation genetics of polymorphism and divergence Genetics 132 1161–1176

    Google Scholar 

  • TA Schlenke DJ Begun (2003) ArticleTitleNatural selection drives Drosophila immune system evolution Genetics 164 1471–1480 Occurrence Handle1:CAS:528:DC%2BD3sXnvF2ntr4%3D Occurrence Handle12930753

    CAS  PubMed  Google Scholar 

  • C Segarra M Aguadé (1992) ArticleTitleMolecular organization of the X chromosome in different species of the obscura group of Drosophila Genetics 130 513–521

    Google Scholar 

  • H Steiner D Hultmark A Engstrom H Bennich HG Boman (1981) ArticleTitleSequence and specificity of two antibacterial proteins involved in insect immunity Nature 292 246–248

    Google Scholar 

  • AJ Stocker CD Kastritsis (1972) ArticleTitleDevelopmental studies in Drosophila. III. The puffing patterns of the salivary gland chromosome of D. pseudoobscura Chromosoma 37 139–176

    Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony, version 4.0b10

  • N Takezaki A Rzhetsky M Nei (1995) ArticleTitlePhylogenetic test of the molecular clock and linearized trees Mol Biol Evol 12 823–833 Occurrence Handle1:CAS:528:DyaK2MXns1yqsbg%3D Occurrence Handle7476128

    CAS  PubMed  Google Scholar 

  • JD Thompson TJ Gibson F Plewniak F Jeanmougin DG Higgins (1997) ArticleTitleThe ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality tools Nucleic Acids Res 25 4876–4882 Occurrence Handle10.1093/nar/25.24.4876 Occurrence Handle1:CAS:528:DyaK1cXntFyntQ%3D%3D Occurrence Handle9396791

    Article  CAS  PubMed  Google Scholar 

  • Y Tryselius C Samakovlis DA Kimbrell D Hultmark (1992) ArticleTitle CecC, a cecropin gene expressed during metamorphosis in Drosophila pupae Eur J Biochem 204 395–399

    Google Scholar 

  • TJ Vision DG Brown SD Tanksley (2000) ArticleTitleThe origins of genomic duplications in Arabidopsis Science 290 2114–2117

    Google Scholar 

  • SD Werman EH Davidson RJ Britten (1990) ArticleTitleRapid evolution in a fraction of the Drosophila nuclear genome J Mol Evol 30 281–289

    Google Scholar 

  • E Wingender X Chen R Hehl H Karas I Liebich V Matys T Meinhardt M Pruss I Reuter F Schacherer (2000) ArticleTitleTRANSFAC: An integrated system for gene expression regulation Nucleic Acids Res 28 316–319 Occurrence Handle10.1093/nar/28.1.316 Occurrence Handle1:CAS:528:DC%2BD3cXhvVKjtbg%3D Occurrence Handle10592259

    Article  CAS  PubMed  Google Scholar 

  • J Zhang (2003) ArticleTitleEvolution by gene duplication: An update Trends Ecol Evol 18 292–298

    Google Scholar 

  • J Zhang HF Rosenberg M Nei (1998) ArticleTitlePositive Darwinian selection after gene duplication in primate ribonuclease genes Proc Natl Acad Sci USA 95 3708–3713 Occurrence Handle10.1073/pnas.95.7.3708 Occurrence Handle1:CAS:528:DyaK1cXitlKjtrc%3D Occurrence Handle9520431

    Article  CAS  PubMed  Google Scholar 

  • L Zhang BS Gaut TJ Vision (2001) ArticleTitleGene duplication and evolution Science 293 1551

    Google Scholar 

  • MQ Zhang (1997) ArticleTitleIdentification of protein coding regions in the human genome by quadratic discriminant analysis Proc Natl Acad Sci USA 94 565–568

    Google Scholar 

  • XL Zheng AL Zheng (2002) ArticleTitleGenomic organization and regulation of three cecropin genes in Anopheles gambiae Insect Mol Biol 11 517–525

    Google Scholar 

  • X Zhou T Nguyen DA Kimbrell (1997) ArticleTitleIdentification and characterization of the cecropin antibacterial protein gene locus in Drosophila virilis J Mol Evol 44 272–281

    Google Scholar 

Download references

Acknowledgments

We are grateful to C. Segarra and G. Ribó for help with the in situ hybridizations. We also thank Serveis Científico-Tècnics from Universitat de Barcelona for automated sequencing facilities. This work was supported by Grants PB97-0918 and BMC2001-2909 from Comisión Interdepartmental de Ciencia y Tecnología (CICyT) and 2001SGR-101 from Comissió Interdepartamental de Recerca i Innovació Tecnològica (CIRIT), Catalonia, Spain, to M.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montserrat Aguadé.

Additional information

Reviewing Editor: Dr. Dmitri Petrov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quesada, H., Ramos-Onsins, S.E. & Aguadé, M. Birth-and-Death Evolution of the Cecropin Multigene Family in Drosophila. J Mol Evol 60, 1–11 (2005). https://doi.org/10.1007/s00239-004-0053-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0053-4

Keywords

Navigation