Skip to main content
Log in

Parameterized linear temporal logics meet costs: still not costlier than LTL

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

We continue the investigation of parameterized extensions of linear temporal logic (LTL) that retain the attractive algorithmic properties of LTL: a polynomial space model checking algorithm and a doubly-exponential time algorithm for solving games. Alur et al. and Kupferman et al. showed that this is the case for parametric LTL (PLTL) and PROMPT-LTL respectively, which have temporal operators equipped with variables that bound their scope in time. Later, this was also shown to be true for parametric LDL (PLDL), which extends PLTL to be able to express all \(\omega \)-regular properties. Here, we generalize PLTL to systems with costs, i.e., we do not bound the scope of operators in time, but bound the scope in terms of the cost accumulated during time. Again, we show that model checking and solving games for specifications in PLTL with costs is not harder than the corresponding problems for LTL. Finally, we discuss PLDL with costs and extensions to multiple cost functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Note that the bound in the parity condition with costs may depend on the trace while one typically uses global bounds for \(\text {cPLTL}\) (see, e.g., Sects. 4 and 5). However, for games in finite arenas (and thus also for model checking) these two variants coincide [22].

  2. Note that our definition is more involved than the one of Kupferman et al., since we require a cycle with non-zero cost instead of any circle.

  3. Here, we use our assumption on \(\kappa \) indicating the sign of the costs.

  4. The same disclaimer as for the parity condition with costs applies here. See Footnote 1.

References

  1. Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for “model measuring”. ACM Trans. Comput. Log. 2(3), 388–407 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.) STOC 04, pp. 202–211. ACM (2004)

  3. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009, vol. 5643 of LNCS, pp. 140–156. Springer (2009)

  4. Boom, M.V.: Weak cost monadic logic over infinite trees. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011, vol. 6907 of LNCS, pp. 580–591. Springer (2011)

  5. Bojańczyk, M.: A bounding quantifier. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004, vol. 3210 of LNCS, pp. 41–55. Springer (2004)

  6. Bojańczyk, M.: Weak MSO with the unbounding quantifier. Theory Comput. Syst. 48(3), 554–576 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bojanczyk, M.: Weak MSO + U with path quantifiers over infinite trees. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014 Part II, vol. 8573 of LNCS, pp. 38–49. Springer (2014)

  8. Bojańczyk, M., Colcombet, T.: Bounds in \(\omega \)-regularity. In: LICS 2006, pp. 285–296. IEEE Computer Society (2006)

  9. Bojańczyk, M., Toruńczyk, S.: Weak MSO + U over infinite trees. In: Dürr, C., Wilke, T. (eds.) STACS 2012, vol. 14 of LIPIcs, pp. 648–660. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2012)

  10. Bozzelli, L.: Alternating automata and a temporal fixpoint calculus for visibly pushdown languages. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007, vol. 4703 of LNCS, pp. 476–491. Springer (2007)

  11. Bozzelli, L., Sánchez, C.: Visibly linear temporal logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014, vol. 8562 of LNCS, pp. 418–483. Springer (2014)

  12. Bozzelli, L., Sánchez, C.: Visibly rational expressions. Acta Inform. 51(1), 25–49 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brázdil, T., Chatterjee, K., Kucera, A., Novotný, P.: Efficient controller synthesis for consumption games with multiple resource types. In: Madhusudan, P., Seshia, Sanjit A. (eds.) CAV 2012, vol. 7358 of LNCS, pp. 23–38. Springer (2012)

  14. C̆erný, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantitative synthesis for concurrent programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011, vol. 6806 of LNCS, pp. 243–259. Springer (2011)

  15. Chatterjee, K., Doyen, L.: Energy parity games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der H., Friedhelm, S., Paul G. (eds.) ICALP 2010 Part II, vol. 6199 of LNCS, pp. 599–610. Springer (2010)

  16. Chatterjee, K., Henzinger, T.A., Horn, F.: Finitary winning in omega-regular games. ACM Trans. Comput. Log., 11(1) (2009)

  17. Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Mean-payoff parity games. In: LICS 2005, pp. 178–187. IEEE Computer Society (2005)

  18. Colcombet, T.: The theory of stabilisation monoids and regular cost functions. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas, W. (eds.) ICALP 2009 Part II, vol. 5556 of LNCS, pp. 139–150. Springer (2009)

  19. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: Rossi, F. (eds.) IJCAI. IJCAI/AAAI (2013)

  20. Faymonville, P., Zimmermann, M.: Parametric linear dynamic logic. In: Peron, A., Piazza, C. (eds.) GandALF 2014, vol. 161 of EPTCS, pp. 60–73 (2014)

  21. Faymonville, P., Zimmermann, M.: Parametric linear dynamic logic (full version). arXiv:1504.03880 (2015). Accepted for publication in information and computation

  22. Fijalkow, N., Zimmermann, M.: Parity and Streett games with costs. LMCS, 10(2) (2014)

  23. Kamp, H.W.: Tense Logic and the Theory of Linear Order. PhD thesis, Computer Science Department, University of California at Los Angeles, USA (1968)

  24. Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Form. Methods Syst. Des. 34(2), 83–103 (2009)

    Article  MATH  Google Scholar 

  25. Leucker, M., Sánchez, C.: Regular linear temporal logic. In: Jones, C., Liu, Z., Woodcock, J. (eds.) ICTAC 2007, vol. 4711 of LNCS, pp. 291–305. Springer (2007)

  26. Mogavero, F., Murano, A., Sorrentino, L.: On promptness in parity games. In: McMillan, K.L., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013, vol. 8312 of LNCS, pp. 601–618. Springer (2013)

  27. Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE (1977)

  28. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190 (1989)

  29. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In: Ausiello, G., Dezani-Ciancaglini, M., Ronchi Della Rocca, S. (eds.) ICALP 1989, vol. 372 of LNCS, pp. 652–671. Springer (1989)

  30. Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007, vol. 4855 of LNCS, pp. 449–460. Springer (2007)

  31. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J. ACM 32(3), 733–749 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tentrup, L., Weinert, A., Zimmermann, M.: Approximating optimal bounds in Prompt-LTL realizability in doubly-exponential time (2015). arXiv:1511.09450

  33. Vardi, M.Y.: A temporal fixpoint calculus. In: Ferrante, J., Mager, P. (eds.) POPL 88, pp. 250–259. ACM Press (1988)

  34. Vardi, M.Y.: The rise and fall of LTL. In: D’Agostino, G., Torre, S.L. (eds.) GandALF 2011, vol. 54 of EPTCS (2011)

  35. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Weinert, A., Zimmermann, M.: Visibly linear dynamic logic (2015). arXiv:1512.05177

  37. Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1–2), 72–99 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zimmermann, M.: Optimal bounds in parametric LTL games. Theor. Comput. Sci. 493, 30–45 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zimmermann, M.: Parameterized linear temporal logics meet costs: still not costlier than LTL. In: Esparza, J., Tronci, E. (eds.) GandALF 2015, vol. 193 of EPTCS, pp. 144–157 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zimmermann.

Additional information

Supported by the project “TriCS” (ZI 1516/1-1) of the German Research Foundation (DFG).

A preliminary version of this work appeared in the proceedings of GandALF 2015 [39].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, M. Parameterized linear temporal logics meet costs: still not costlier than LTL. Acta Informatica 55, 129–152 (2018). https://doi.org/10.1007/s00236-016-0279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-016-0279-9

Navigation