Skip to main content
Log in

The Use of Amphipols for Solution NMR Studies of Membrane Proteins: Advantages and Constraints as Compared to Other Solubilizing Media

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Solution-state nuclear magnetic resonance studies of membrane proteins are facilitated by the increased stability that trapping with amphipols confers to most of them as compared to detergent solutions. They have yielded information on the state of folding of the proteins, their areas of contact with the polymer, their dynamics, water accessibility, and the structure of protein-bound ligands. They benefit from the diversification of amphipol chemical structures and the availability of deuterated amphipols. The advantages and constraints of working with amphipols are discussed and compared to those associated with other non-conventional environments, such as bicelles and nanodiscs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

APol:

Amphipol

A8-35:

Polyacrylate-based amphipol A8-35

BLT2:

Low-affinity leukotriene receptor

BR:

Bacteriorhodopsin

C8E4 :

Octyltetraoxyethylene

CFE:

Cell-free expression

CRINEPT:

Cross-correlated relaxation-enhanced polarization transfer

DHPC:

Dihexanoylphosphatidylcholine

DAPol:

A8-35 with perdeuterated octyl and isopropyl chains and a hydrogenated polyacrylate backbone

DPC:

n-Dodecylphosphocholine

DDM:

n-Dodecyl-β-d-maltopyranoside

GPCR:

G protein-coupled receptor

12-HHT:

12S-Hydroxyheptadeca-5Z,8E,10E-trienoic acid

HOESY:

Hetero-nuclear Overhauser spectroscopy

12-HETE:

12S-Hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid

HSQC:

Hetero-single quantum correlation experiment

KpOmpA:

Outer membrane protein A from Klebsiella pneumoniae

LTB4 :

Leukotriene B4

MD:

Molecular dynamics

MP:

Membrane protein

MW:

Molecular weight

NAPol:

Non-ionic amphipol

MNG:

Maltose neopentyl glycol

NMR:

Nuclear magnetic resonance

NOE:

Nuclear Overhauser effect

ND:

Nanodisc

OmpA:

Outer membrane protein A from Escherichia coli

OmpX:

Outer membrane protein X from Escherichia coli

perDAPol:

Perdeuterated A8-35

PC-APol:

Phosphocholine amphipol

R S :

Stokes radius

SAPol:

Sulfonated amphipol

SDS:

Sodium dodecylsulfate

ssNMR:

Solid-state NMR

SEC:

Size exclusion chromatography

tOmpA:

Transmembrane domain of OmpA

TROSY:

Transverse relaxation optimized spectroscopy

References

  • Althoff T, Mills DJ, Popot JL, Kühlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4652–4664

    Article  CAS  Google Scholar 

  • Arnold T, Poynor M, Nussberger S, Lupas AN, Linke D (2007) Gene duplication of the eight-stranded β-barrel OmpX produces a functional pore: a scenario for the evolution of transmembrane β-barrel. J Mol Biol 366:1174–1184

    Article  CAS  Google Scholar 

  • Arora A, Abildgaard F, Bushweller JH, Tamm LK (2001) Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat Struct Biol 8:334–338

    Article  CAS  Google Scholar 

  • Banères JL, Martin A, Hullot P, Girard JP, Rossi JC, Parello J (2003) Structure-based analysis of GPCR function: conformational adaptation of both agonist and receptor upon leukotriene B4 binding to recombinant BLT1. J Mol Biol 329:801–814

    Article  Google Scholar 

  • Banères JL, Popot JL, Mouillac B (2011) New advances in production and functional folding of G-protein-coupled receptors. Trends Biotechnol 29:314–322

    Article  Google Scholar 

  • Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856

    Article  CAS  Google Scholar 

  • Bazzacco P, Billon-Denis E, Sharma KS, Catoire LJ, Mary S, Le Bon C, Point E, Banères JL, Durand G, Zito F, Pucci B, Popot JL (2012) Nonionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution nuclear magnetic resonance. Biochemistry 51:1416–1430

    Article  CAS  Google Scholar 

  • Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Popot JL, Guittet E (2009) Inter- and intramolecular contacts in a membrane protein/surfactant complex observed by heteronuclear dipole-to-dipole cross-relaxation. J Magn Reson 197:91–95

    Article  CAS  Google Scholar 

  • Catoire LJ, Damian M, Giusti F, Martin A, van Heijenoort C, Popot JL, Guittet E, Banères JL (2010a) Structure of a GPCR ligand in its receptor–bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J Am Chem Soc 132:9049–9057

    Article  CAS  Google Scholar 

  • Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Guittet E, Popot JL (2010b) Solution NMR mapping of water-accessible residues in the transmembrane β-barrel of OmpX. Eur Biophys J 39:623–630

    Article  CAS  Google Scholar 

  • Catoire LJ, Damian M, Baaden M, Guittet E, Banères JL (2011) Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range. J Biomol NMR 50:191–195

    Article  CAS  Google Scholar 

  • Catoire LJ, Warnet XL, Warschawski DE (2014) Micelles, bicelles, amphipols, nanodiscs, liposomes or intact cells: the hitchhiker’s guide to the membrane protein study by NMR. In: Mus-Veteau I (ed) Membrane protein production for structural analysis. Springer, Berlin (in press)

  • Chae PS, Rasmussen SG, Rana RR, Gotfryd K, Chandra R, Goren MA, Kruse AC, Nurva S, Loland CJ, Pierre Y, Drew D, Popot JL, Picot D, Fox BG, Guan L, Gether U, Byrne B, Kobilka B, Gellman SH (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7:1003–1008

    Article  CAS  Google Scholar 

  • Champeil P, Menguy T, Tribet C, Popot JL, le Maire M (2000) Interaction of amphipols with the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 275:18623–18637

    Article  CAS  Google Scholar 

  • Charvolin D, Perez JB, Rouvière F, Giusti F, Bazzacco P, Abdine A, Rappaport F, Martinez KL, Popot JL (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc Natl Acad Sci USA 106:405–410

    Article  CAS  Google Scholar 

  • Czerski L, Sanders CR (2000) Functionality of a membrane protein in bicelles. Anal Biochem 284:327–333

    Article  CAS  Google Scholar 

  • Dahmane T, Damian M, Mary S, Popot JL, Banères JL (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521

    Article  CAS  Google Scholar 

  • Dahmane T, Giusti F, Catoire LJ, Popot JL (2011) Sulfonated amphipols: synthesis, properties, and applications. Biopolymers 95:811–823

    Article  CAS  Google Scholar 

  • Dahmane T, Rappaport F, Popot JL (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence and absence of lipids. Functional consequences. Eur Biophys J 42:85–101

    Article  CAS  Google Scholar 

  • Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J Am Chem Soc 126:3477–3478

    Article  CAS  Google Scholar 

  • Diab C, Tribet C, Gohon Y, Popot JL, Winnik FM (2007) Complexation of integral membrane proteins by phosphorylcholine-based amphipols. Biochim Biophys Acta 1768:2737–2747

    Article  CAS  Google Scholar 

  • Dupont M, De E, Chollet R, Chevalier J, Pages J-M (2004) Enterobacter aerogenes OmpX, a cation-selective channel mar- and osmo-regulated. FEBS Lett 569:27–30

    Article  CAS  Google Scholar 

  • Elter S, Raschle T, Arens S, Gelev V, Etzkorn M, Wagner G (2014) The use of amphipols for NMR structural characterization of 7-TM proteins. J Membr Biol (in press)

  • Etzkorn M, Raschle T, Hagn F, Gelev V, Rice AJ, Walz T, Wagner G (2013) Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21:394–401

    Article  CAS  Google Scholar 

  • Etzkorn M, Zoonens M, Catoire LJ, Popot JL, Hiller S (2014) How amphipols embed membrane proteins: Global solvent accessibility and interaction with a flexible protein terminus. J Membr Biol (in press)

  • Fernández C, Adeishvili K, Wüthrich K (2001) Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles. Proc Natl Acad Sci USA 98:2358–2363

    Article  Google Scholar 

  • Fiaux J, Bertelsen EB, Horwich AL, Wüthrich K (2002) NMR analysis of a 900 K GroEL GroES complex. Nature 418:207–211

    Article  CAS  Google Scholar 

  • Giusti F, Popot JL, Tribet C (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380

    Article  CAS  Google Scholar 

  • Giusti F, Rieger J, Catoire L, Qian, S, Calabrese AN, Watkinson TG, Radford S, Ashcroft A, Fradet A, Popot JL (2014) Synthesis, characterization and applications of a perdeuterated amphipol. J Membr Biol (in press)

  • Gohon Y, Pavlov G, Timmins P, Tribet C, Popot JL, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334:318–334

    Article  CAS  Google Scholar 

  • Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot JL (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290

    Article  CAS  Google Scholar 

  • Gohon Y, Dahmane T, Ruigrok R, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot JL, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537

    Article  CAS  Google Scholar 

  • Griesinger C, Bennati M, Vieth HM, Luchinat C, Parigi G, Höfer P, Engelke F, Glaser SJ, Denysenkov V, Prisner TF (2012) Dynamic nuclear polarization at high magnetic fields in liquids. Prog Nucl Magn Reson Spectrosc 64:4–28

    Article  CAS  Google Scholar 

  • Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919–1925

    Article  CAS  Google Scholar 

  • Kang CB, Li Q (2011) Solution NMR study of integral membrane proteins. Curr Opin Struct Biol 15:560–569

    Article  CAS  Google Scholar 

  • Kelly E, Privé GG, Tieleman PD (2005) Molecular models of lipopeptide detergents: large coiled-coils with hydrocarbon interiors. J Am Chem Soc 127:13446–13447

    Article  CAS  Google Scholar 

  • Koutsopoulos S, Kaiser L, Eriksson HM, Zhang S (2012) Designer peptide surfactants stabilize diverse functional membrane proteins. Chem Soc Rev 41:1721–1728

    Article  CAS  Google Scholar 

  • Le Bon C, Popot JL, Giusti F (2014a) Labeling and functionalizing amphipols for biological applications. J Membr Biol (in press)

  • Le Bon C, Della Pia EA, Giusti F, Lloret N, Zoonens M, Martinez KL, Popot JL (2014b) Synthesis of an oligonucleotide-derivatized amphipol and its use to trap and immobilize membrane proteins. Nucleic Acids Res (in press)

  • Lee D, Walter KF, Brückner AK, Hilty C, Becker S, Griesinger C (2008) Bilayer in small bicelles revealed by lipid-protein interactions using NMR spectroscopy. J Am Chem Soc 130:13822–13823

    Article  CAS  Google Scholar 

  • Martinez KL, Gohon Y, Corringer PJ, Tribet C, Mérola F, Changeux JP, Popot JL (2002) Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett 528:251–256

    Article  CAS  Google Scholar 

  • McGregor CL, Chen L, Pomroy NC, Hwang P, Go S, Chakrabartty A, Privé GG (2003) Lipopeptide detergents designed for the structural study of membrane proteins. Nat Biotechnol 21:171–176

    Article  CAS  Google Scholar 

  • Mouillac B, Banères JL (2010) Mammalian membrane receptors expression as inclusion bodies in Escherichia coli. Methods Mol Biol 601:39–48

    Article  CAS  Google Scholar 

  • Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46:2059–2069

    Article  CAS  Google Scholar 

  • Pautsch A, Schulz GE (2000) High-resolution structure of the OmpA membrane domain. J Mol Biol 298:273–282

    Article  CAS  Google Scholar 

  • Perlmutter JD, Drasler WJ, Xie W, Gao J, Popot JL, Sachs JN (2011) All-atom and coarse-grained molecular dynamics simulations of a membrane protein stabilizing polymer. Langmuir 27:10523–10537

    Article  CAS  Google Scholar 

  • Perlmutter JD, Popot J-L, Sachs, JN (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. Submitted for publication

  • Picard M, Dahmane T, Garrigos M, Gauron C, Giusti F, le Maire M, Popot JL, Champeil P (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869

    Article  CAS  Google Scholar 

  • Plevin MJ, Boisbouvier J (2012) Isotope-labelling of methyl groups for NMR studies of large proteins In: Clore M, Potts J (eds) Recent developments in biomolecular NMR, RSC biomolecular sciences no. 25. Royal Society of Chemistry. doi:10.1039/9781849735391

    Google Scholar 

  • Pocanschi CL, Dahmane T, Gohon Y et al (2006) Amphipathic polymers: tools to fold integral membrane proteins to their active form. Biochemistry 45:13954–13961

    Article  CAS  Google Scholar 

  • Poget SF, Girvin ME (2007) Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. Biochim Biophys Acta 68:3098–3106

    Article  Google Scholar 

  • Popot JL (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Ann Rev Biochem 79:737–775

    Article  CAS  Google Scholar 

  • Popot JL, Althoff T, Bagnard D et al (2011) Amphipols from A to Z. Ann Rev Biophys 40:379–408

    Article  CAS  Google Scholar 

  • Privé G (2009) Lipopeptide detergents for membrane protein studies. Curr Opin Struct Biol 19:1–7

    Article  Google Scholar 

  • Raschle T, Hiller S, Etzkorn M, Wagner G (2010) Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr Opin Struct Biol 20:471–479

    Article  CAS  Google Scholar 

  • Renault M (2008) Etudes structurales et dynamiques de la protéine membranaire KpOmpA par RMN en phase liquide et solide. Ph. D. Thesis Université Paul Sabatier, Toulouse, France

  • Renault M, Tommassen-van Boxtel R, Bos MP, Post JA, Tommassen J, Baldus M (2012) Cellular solid-state nuclear magnetic resonance spectroscopy. Proc Natl Acad Sci USA 109:4863–4868

    Article  CAS  Google Scholar 

  • Riek R, Wider G, Pervushin K, Wüthrich K (1999) Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proc Natl Acad Sci USA 96:4918–4923

    Article  CAS  Google Scholar 

  • Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG (2009) Chapter 11—reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–213

    Article  CAS  Google Scholar 

  • Ruschak AM, Religa TL, Breuer S, Witt S, Kay LE (2010) The proteasome antechamber maintains substrates in an unfolded state. Nature 467:868–871

    Article  CAS  Google Scholar 

  • Sanders CR 2nd, Landis GC (1995) Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry 34:4030–4040

    Article  CAS  Google Scholar 

  • Sharma KS, Durand G, Gabel F, Bazzacco P, Le Bon C, Billon-Denis E, Catoire LJ, Popot JL, Ebel C, Pucci B (2012) Non–ionic amphiphilic homopolymers: synthesis, solution properties, and biochemical validation. Langmuir 28:4625–4639

    Article  CAS  Google Scholar 

  • Takeda M, Kainosho M (2012) Cell-free protein synthesis using E. coli cell extract for NMR studies. Adv Exp Med Biol 992:167–177

    Article  CAS  Google Scholar 

  • Tifrea DF, Sun G, Pal S, Zardeneta G, Cocco MJ, Popot JL, de la Maza LM (2011) Amphipols stabilize the Chlamydia major outer membrane protein and enhance its protective ability as a vaccine. Vaccine 29:4623–4631

    Article  CAS  Google Scholar 

  • Triba MN, Warschawski DE, Devaux PF (2005) Reinvestigation by phosphorus NMR of lipid distribution in bicelles. Biophys J 88:1887–1901

    Article  CAS  Google Scholar 

  • Tribet C, Audebert R, Popot JL (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050

    Article  CAS  Google Scholar 

  • Tribet C, Diab C, Dahmane T, Zoonens M, Popot JL, Winnik FM (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634

    Article  CAS  Google Scholar 

  • Vogt J, Schulz GE (1999) The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. Structure 7:1301–1309

    Article  CAS  Google Scholar 

  • Vold RR, Prosser RS, Deese AJ (1997) Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides. J Biomol NMR 9:329–335

    Article  CAS  Google Scholar 

  • Wang X, Corin K, Baaske P, Wienken CJ, Jerabek-Willemsen M, Duhr S, Braun D, Zhang S (2011) Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proc Natl Acad Sci USA 108:9049–9054

    Article  CAS  Google Scholar 

  • Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand E, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta 1808:1957–1974

    Article  CAS  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Book  Google Scholar 

  • Yokomizo T, Kako K, Terawaki K, Izumi T, Shimizu T (2000) A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J Exp Med 192:421–432

    Article  CAS  Google Scholar 

  • Zhao X, Nagai Y, Reeves PJ, Kiley P, Khorana HG, Zhang S (2006) Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin. Proc Natl Acad Sci USA 103:17707–17712

    Article  CAS  Google Scholar 

  • Zhou HX, Cross TA (2013) Influences of membrane mimetic environments on membrane protein structures. Annu Rev Biophys 42:361–392

    Article  CAS  Google Scholar 

  • Zoonens M, Catoire LJ, Giusti F, Popot JL (2005) NMR study of a membrane protein in detergent–free aqueous solution. Proc Natl Acad Sci USA 102:8893–8898

    Article  CAS  Google Scholar 

  • Zoonens M, Giusti F, Zito F, Popot JL (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer. Implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404

    Article  CAS  Google Scholar 

  • Zoonens M, Zito F, Martinez KL, Popot JL (2014) Amphipols: a general introduction and some protocols. In: Mus-Veteau I (ed) Membrane protein production for structural analysis. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

We are extremely grateful to Sophie Walmé and Marie-Noëlle Rager (ChimieParisTech, Paris), and Carine van Heijenoort (ICSN, Gif/Yvette) for assistance with NMR experiments. We express our gratitude to B. Pucci (Université d’Avignon et des Pays de Vaucluse) for his long-term involvement in the development of non-ionic amphipols. This work was supported by the Centre National de la Recherche Scientifique (CNRS), Paris-7 University (Sorbonne Paris Cité), the “Initiative d’Excellence” program from the French State (Grant “DYNAMO,” ANR-11-LABX-0011-01), Human Frontier Science Program Organization Grant RG00223/2000-M, from the Agence Nationale pour la Recherche ANR-07-BLAN-0092 “Amphipol-assisted folding of GPCRs,” and E.U. Specific Targeted Research Project “Innovative tools for membrane protein structural proteomics.” LJC is a recipient of Projects Exploratoires/Premier Soutien (PEPS, LeukomotiVe project) from the CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent J. Catoire.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Planchard, N., Point, É., Dahmane, T. et al. The Use of Amphipols for Solution NMR Studies of Membrane Proteins: Advantages and Constraints as Compared to Other Solubilizing Media. J Membrane Biol 247, 827–842 (2014). https://doi.org/10.1007/s00232-014-9654-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9654-z

Keywords

Navigation