Skip to main content
Log in

Local Osmosis and Isotonic Transport

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Osmotically driven water flow, u (cm/s), between two solutions of identical osmolarity, co (300 mM in mammals), has a theoretical isotonic maximum given by u = j/co, where j (moles/cm2/s) is the rate of salt transport. In many experimental studies, transport was found to be indistinguishable from isotonic. The purpose of this work is to investigate the conditions for u to approach isotonic. A necessary condition is that the membrane salt/water permeability ratio, ε, must be small: typical physiological values are ε = 10−3 to 10−5, so ε is generally small but this is not sufficient to guarantee near-isotonic transport. If we consider the simplest model of two series membranes, which secrete a tear or drop of sweat (i.e., there are no externally-imposed boundary conditions on the secretion), diffusion is negligible and the predicted osmolarities are: basal = co, intracellular ≈ (1 + ε)co, secretion ≈ (1 + 2ε)co, and u ≈ (1 − 2ε)j/co. Note that this model is also appropriate when the transported solution is experimentally collected. Thus, in the absence of external boundary conditions, transport is experimentally indistinguishable from isotonic. However, if external boundary conditions set salt concentrations to co on both sides of the epithelium, then fluid transport depends on distributed osmotic gradients in lateral spaces. If lateral spaces are too short and wide, diffusion dominates convection, reduces osmotic gradients and fluid flow is significantly less than isotonic. Moreover, because apical and basolateral membrane water fluxes are linked by the intracellular osmolarity, water flow is maximum when the total water permeability of basolateral membranes equals that of apical membranes. In the context of the renal proximal tubule, data suggest it is transporting at near optimal conditions. Nevertheless, typical physiological values suggest the newly filtered fluid is reabsorbed at a rate u ≈ 0.86 j/co, so a hypertonic solution is being reabsorbed. The osmolarity of the filtrate cF (M) will therefore diminish with distance from the site of filtration (the glomerulus) until the solution being transported is isotonic with the filtrate, u = j/cF.With this steady-state condition, the distributed model becomes approximately equivalent to two membranes in series. The osmolarities are now: cF ≈ (1 − 2ε)j/co, intracellular ≈ (1 − ε)co, lateral spaces ≈ co, and u ≈(1 + 2ε)j/co. The change in cF is predicted to occur with a length constant of about 0.3 cm. Thus, membrane transport tends to adjust transmembrane osmotic gradients toward εco, which induces water flow that is isotonic to within order ε. These findings provide a plausible hypothesis on how the proximal tubule or other epithelia appear to transport an isotonic solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Barfus D.W., Schafer J.A. 1984. Rate formation and composition of absorbate from proximal nephron segments. Am. J. Physiol. 247:F117–F129

    Google Scholar 

  • Curran P.F. 1960. Na, Cl, and water transport by rat ileum in vitro. J. Gen. Physiol. 43:1137–1148

    CAS  PubMed  Google Scholar 

  • Curran P.F., Mclntosh J.R. 1962. A model system for biological water transport. Nature 193:347–348

    CAS  PubMed  Google Scholar 

  • Diamond J.M. 1964. The mechanism of isotonic water transport. J. Gen. Physiol. 48:15–42

    CAS  PubMed  Google Scholar 

  • Diamond J.M., Bossert W.H. 1967. A mechanism for coupling of water and solute transport in epithelia. J. Gen. Physiol. 50:2061–2083

    Article  CAS  PubMed  Google Scholar 

  • Fischbarg J., Diecke F.P.J. 2005. A mathematical model of electrolyte and fluid transport across corneal endothelium. J. Membrane Biol. 203:41–56

    Article  CAS  Google Scholar 

  • Green R., Giebisch G. 1984. Luminal hypotonicity: a driving force for fluid absorption from the proximal tubule. Am. J. Physiol. 246:F167–F174

    CAS  PubMed  Google Scholar 

  • King L.S., Kozono D., Agre P. 2004. From structure to disease: the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell. Biol. 9:687–698

    Google Scholar 

  • Larsen E.H., Sorensen J.B., Sorensen N. 2000. A mathematical model of solute coupled water transport in toad intestine incorporating recirculation of the actively transported solute. J. Gen. Physiol. 116:101–124

    Article  CAS  PubMed  Google Scholar 

  • Loo D.D.F., Wright E.M., Zruthen T. 2002. Water pumps. J. Physiol. 542:53–60

    Article  CAS  PubMed  Google Scholar 

  • Mathias R.T. 1985. Epithelial water transport in a balanced gradient system. Biophys. J. 47:823–836

    CAS  PubMed  Google Scholar 

  • Mathias R.T., Rae J.L., Baldo G.J. 1997. Physiological properties of the normal lens. Physiol. Rev. 77:21–50

    CAS  PubMed  Google Scholar 

  • McLaughlin S., Mathias R.T. 1985. Electro-osmosis and the reabsorption of fluid in renal proximal tubules. J. Gen. Physiol. 85:699–728

    Article  CAS  PubMed  Google Scholar 

  • Meinild A., Klaerke D.A., Loo D.D., Wright E.M., Zeuthen T. 1998. The human Naglucose cotransporter is a molecular water pump. J. Physiol. 508:15–21

    CAS  PubMed  Google Scholar 

  • Nedergaard S., Larsen E.H., Ussing H.H. 1999. Sodium recirculation and isotonic transport in toad small intestine. J. Membrane Biol. 168:241–251

    Article  CAS  Google Scholar 

  • Sackin H., Boulpaep E.L. 1975. Models for coupling of salt and water transport. J. Physiol. 66:671–733

    CAS  Google Scholar 

  • Sanchez J.M., Li Y., Rubashkin A., Iserovich P., Wen Q., Ruberti J.W., Smith R.W., Rittenband D., Kuang, Diecke F.P., Fischbarg F.P. 2002. Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium. J. Membrane. Biol. 187:37–50

    CAS  Google Scholar 

  • Schultz S.G. 2001. Epithelial water absorption: osmosis or cotransportation? Proc. Natl. Acad. Sci. USA 98:3628–3630

    Article  CAS  Google Scholar 

  • Segel L.A. 1970. Standing-gradient flows driven by active solute transport. J. Theor Biol. 29:233–250

    Article  CAS  PubMed  Google Scholar 

  • Spring K.R. 2002. Solute recirculation. J. Physiol. 542:51

    Article  CAS  PubMed  Google Scholar 

  • Ussing H.H., Eskesen K. 1989. Mechanism of isotonic water transport in glands. Acta Physiol. Scanod. 36:443–454

    Google Scholar 

  • Varadaraj K., Kushmericky C., Baldo G.J., Bassnett S., Shiels A., Mathias R.T. 1999. The role of MIP in lens fiber cell membrane transport. J. Membrane. Biol. 170:191–203

    Article  CAS  Google Scholar 

  • van Os C.H., Kamsteeg E.J., Marr N., Deen P.M. 2000. Phsyiological relevance of aquaporins: luxury or necessity? Pfluegers Arch. 44:513–520

    Google Scholar 

  • Verkman A.S. 1989. Mechanisms and regulation of water permeability in renal epithelia. Am. J. Physiol. 257:C837–C850

    CAS  PubMed  Google Scholar 

  • Weinstein A.M., Stephenson J.L. 1981. Models of coupled salt and water transport across leaky epithelia. J. Membrane. Biol. 60:1–20

    Article  CAS  Google Scholar 

  • Whittembury, G., Reuss, L. 1992. Chapter 13: Mechanism of coupling of solute and solvent transport in epithelia. In: The Kidney: Physiology. 2nd Edition, Ed: Seldin, D.W., Giebisch, G. Raven Press, New York

  • Zeuthen T., Meinild A.K., Loo D.D., Wright E.M., Klaerke D.A. 2001. Isotonic transport by the Na+-glucose cotransporter SGLT1 from humans and rabbit. J. Physiol. 531:631–644

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Eye Institute, grant EY06391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.T. Mathias.

Appendix

Appendix

In the text, we have presented results from perturbation expansions of the equations describing Fig. 2, 3, 4 and 7. For each of these models, the perturbation approach is quite similar, so in this Appendix we will go through the expansion for Fig. 2A to demonstrate the approach.

The concentrations and fluid flow in Equations 7–9 are expanded in a series in ε.

$$ \eqalign{ & C_{{\rm{i}}} = C^{{{\rm{(0)}}}}_{{\rm{i}}} + \varepsilon C^{{{\rm{(1)}}}}_{{\rm{i}}} {\rm{ + }} \ldots \cr & C_{{\rm{s}}} = C^{{{\rm{(0)}}}}_{{\rm{s}}} + \varepsilon C^{{{\rm{(1)}}}}_{{\rm{s}}} + \ldots \cr & U = U^{{(0)}} + \varepsilon \,U^{{(1)}} + \ldots } $$
((A1))

Equation A1 is inserted into Eqs. 7–9 and terms of like powers in ε are collected to define a series of problems to be solved. For the order (0) problem, we obtain

$$ \eqalign{ & {{{\rm{d}}C^{{{\rm{(0)}}}}_{{\rm{i}}} (y)} \over {{\rm{d}}y}} = 0 \cr & 1 - C^{{{\rm{(0)}}}}_{{\rm{i}}} (0) = 0 \cr & C^{{{\rm{(0)}}}}_{{\rm{s}}} - C^{{{\rm{(0)}}}}_{{\rm{i}}} = 1 \cr & U^{{(0)}} C^{{{\rm{(0)}}}}_{{\rm{s}}} = 1 } $$
((A2))

The solutions to Eq. A2 are:

$$ {\eqalign{ & C^{{{\rm{(0)}}}}_{{\rm{i}}} = 1 \cr & C^{{{\rm{(0)}}}}_{{\rm{s}}} = 1 \cr & U^{{{\rm{(0)}}}} C^{{{\rm{(0)}}}}_{{\rm{s}}} = 1 }} $$
((A3))

The order (1) problems are:

$$ \eqalign{ & {{{\rm{d}}C^{{{\rm{(0)}}}}_{{\rm{i}}} (y)} \over {{\rm{d}}y}} = k_{{\rm{i}}} (U^{{{\rm{(0)}}}} C^{{{\rm{(0)}}}}_{{\rm{i}}} - 1) \cr & C^{{{\rm{(1)}}}}_{{\rm{i}}} (0) = U^{{{\rm{(0)}}}} \cr & C^{{{\rm{(1)}}}}_{{\rm{s}}} - C^{{{\rm{(1)}}}}_{{\rm{i}}} (0) = \alpha U^{{(0)}} \cr & U^{{(0)}} C^{{{\rm{(1)}}}}_{{\rm{s}}} + U^{{(1)}} C^{{{\rm{(1)}}}}_{{\rm{s}}} = 0 } $$
((A4))

If the order (0) solutions in Eq. A3 are inserted into Eq. A4, the results are:

$$ \eqalign{ & C^{{(1)}}_{{\rm{i}}} = 1 \cr & C^{{(1)}}_{{\rm{s}}} = 1 + \alpha \cr & U^{{(1)}} = - (1 + \alpha ) } $$
((A5))

Thus to within order (ε2) the solutions are given by:

$$ \eqalign{ & C_{{\rm{i}}} = 1 + \varepsilon + O(\varepsilon ^{2} ) \cr & C_{{\rm{s}}} = 1 + \varepsilon (1 + \alpha ) + O(\varepsilon ^{2} ) \cr & U = 1 - \varepsilon (1 + \alpha ) + O(\varepsilon ^{2} ) }$$
((A6))

In this simple model, the concentrations and flows are constant to within order (ε2). In the more complicated models of extracellular clefts, the values of C (1)e (y) and U (0)e (y) depend on y. Nevertheless, the more complicated models are analyzed in the same manner, so the expansions will not be presented.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathias, R., Wang, H. Local Osmosis and Isotonic Transport. J Membrane Biol 208, 39–53 (2005). https://doi.org/10.1007/s00232-005-0817-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0817-9

Keywords

Navigation