Skip to main content

Advertisement

Log in

Phytoplankton and pigment distributions in an anticyclonic slope water oceanic eddy (SWODDY) in the southern Bay of Biscay

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

An anticyclonic slope water oceanic eddy (SWODDY), named AE6, was sampled in the southern Bay of Biscay from 12 to 31 August 1998 to assess changes in the abundance and composition of phytoplankton assemblages related to the mesoscale feature. SWODDY AE6 showed characteristic biological signatures. A twofold increase in chlorophyll a concentration was found at the eddy centre relative to surrounding waters. Picoplankton cells accounted for a lower fraction of total chlorophyll a values at the eddy centre (44−50%) than outside the eddy (54−61%). Microscopic cell counts and HPLC pigment analysis showed that diatoms were almost entirely confined to the eddy centre, but both techniques yielded different results when studying other phytoplankton groups. Microscopic cell counts indicated that the spatial distribution of diatoms, dinoflagellates and unidentified flagellates was significantly influenced by SWODDY AE6, showing maximum abundance inside the mesoscale feature. HPLC pigment analysis provided more detailed information about the composition of pico–nanoplanktonic organisms. Pigment data processed by means of the CHEMTAX program showed "chlorophytes", "haptophytes" and "dinoflagellates II" (having haptophyte-like pigments and gyroxanthin-diester) as the more abundant "pigment classes" at the eddy centre, whereas dominance of "chlorophytes" and higher contribution of "cyanobacteria" (type Synechococcus) were estimated in the surrounding waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  • Angel MV, Fasham MJR (1983) Eddies and biological processes. In: Robinson AR (ed) Eddies in marine science. Springer, Berlin Heidelberg New York, pp 492–524

  • Ansotegui A, Sarobe A, Trigueros JM, Urrutxurtu I, Orive E (2003) Size distribution of algal pigments and phytoplankton assemblages in a coastal estuarine environment: contribution of small eukaryotic algae. J Plankton Res 25:341–355

    Article  CAS  Google Scholar 

  • Barlow RG, Mantoura RFC, Cummings DG, Fileman TW (1997) Pigment chemotaxonomic distributions of phytoplankton during summer in the western Mediterranean. Deep-Sea Res II 44:833–850

    Google Scholar 

  • Bidigare RR, Ondrusek ME (1996) Spatial and temporal variability of phytoplankton pigment distributions in the central equatorial Pacific Ocean. Deep-Sea Res II 43:809–833

    Google Scholar 

  • Bjørnland T (1990) Carotenoid structures and lower plant phylogeny. In: Krinsky NI, Mathews-Roth MM, Taylor RF (eds) Carotenoids: chemistry and biology. Plenum, New York

  • Bjørnland T, Fiksdahl A, Skjetne T, Krane J, Liaaen-Jensen S (2000) Gyroxanthin—the first allenic acetylenic carotenoid. Tetrahedron 56:9047–9056

    Article  Google Scholar 

  • Daugbjerg N, Hansen G, Larsen J, Moestrup Ø (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302–317

    Google Scholar 

  • Dickson RR, Hughes DG (1981) Satellite evidence of mesoscale eddy activity over the Biscay abyssal plain. Oceanol Acta 4:43–46

    Google Scholar 

  • Díez B, Pedrós-Alió C, Marsh TL, Massana R (2002) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microb 67:2942–2951

    Article  Google Scholar 

  • Falkowski PG, Ziemann D, Kolber Z, Bienfang PK (1991) Role of eddy pumping in enhancing primary production in the ocean. Nature 352:55–58

    Google Scholar 

  • Fryxell GA, Gould Jr E, Balmori ER, Theriot EC (1985) Gulf Stream warm core rings: phytoplankton in two fall rings of different ages. J Plankton Res 7:339–364

    Google Scholar 

  • Garçon VC, Oschlies A, Doney SC, McGillicudy D, Waniek J (2001) The role of mesoscale variability on plankton dynamics in the North Atlantic. Deep-Sea Res II 48:2199–2226

    Google Scholar 

  • Garrido JL, Otero J, Maestro MA, Zapata M (2000) The main non-polar chlorophyll c from Emiliania huxleyi (Prymnesiophyceae) is a chlorophyll c 2−monogalactosyldiacylglyceride ester: a mass spectrometry study. J Phycol 36:497–505

    Article  CAS  Google Scholar 

  • Gibb SW, Barlow RG, Cummings DG, Rees NW, Trees CC, Holligan P, Suggett D (2000) Surface phytoplankton pigment distributions in the Atlantic Ocean: an assessment of basin scale variability between 50°N and 50°S. Prog Oceanogr 45:339–368

    Article  Google Scholar 

  • Gould WJ, Fryxell GA (1988a) Phytoplankton species composition and abundance in a Gulf Stream warm core ring. I. Changes over a five month period. J Mar Res 46:367–398

    Google Scholar 

  • Gould WJ, Fryxell GA (1988b) Phytoplankton species composition and abundance in a Gulf Stream warm core ring. II. Distributional patterns. J Mar Res 46:399–428

    Google Scholar 

  • Hitchcock GL, Langdon C, Smayda TJ (1985) Short-term changes in the biology of a Gulf Stream warm-core ring: phytoplankton biomass and productivity. Limnol Oceanogr 32:919–928

    Google Scholar 

  • Jeffrey SW, Hallegraeff GM (1980) Studies of phytoplankton species and photosynthetic pigments in a warm core eddy of the East Australian current. I. Summer populations. Mar Ecol Prog Ser 3:285–294

    CAS  Google Scholar 

  • Jeffrey SW, Mantoura RFC, Bjørnland T (1997) Data for the identification of 47 key phytoplankton pigments. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, Paris, pp 449–559

  • Johnsen G, Sakshaug E (1993) Bio-optical characteristics and photoadaptive responses in the toxic and bloom-forming dinoflagellates Gyrodinium aureoulum, Gymnodinium galatheanum, and two strains of Prorocentrum minimum. J Phycol 29:627–642

    CAS  Google Scholar 

  • Lochte K, Pfannkuche O (1987) Cyclonic cold-core eddy in the eastern North Atlantic. II. Nutrients, phytoplankton and bacterioplankton. Mar Ecol Prog Ser 39:153–164

    Google Scholar 

  • Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283

    CAS  Google Scholar 

  • Madelain F, Kerut EG (1978) Evidence of mesoscale eddies in the Northeast-Atlantic from a drifting buoy experiment. Oceanol Acta 1:159–168

    Google Scholar 

  • Marty J-C, Chiavérini J, Pizay M-D, Avril B (2002) Seasonal and interannual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991–1999). Deep-Sea Res II 49:1965–1985

    Google Scholar 

  • McGillicudy DJ, Robinson AR, Siegel DA, Jannasch HW, Johnson R, Dickey TD, McNeil J, Michaels AF, Knap AH (1998) Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394:263–266

    Article  Google Scholar 

  • Millie DF, Schofield O, Kirkpatrick GJ, Johnsen G, Tester OA, Vinyard BT (1997) Detection of harmful algal blooms using photopigments and absorption signature: a case study of the Florida red tide dinoflagellate. Limnol Oceanogr 42:1240–1251

    CAS  Google Scholar 

  • Moon-van der Staay SY, van der Staay GWM, Guillou L, Vaulot D, Claustre H, Medlin LK (2000) Abundance and diversity of prymnesiophytes in the picoplankton community from the equatorial Pacific Ocean inferred from 18S rDNA sequences. Limnol Oceanogr 45:98–109

    Google Scholar 

  • Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Google Scholar 

  • Not F, Simon N, Biegala I, Vaulot D (2002) Application of fluorescent in situ hybridization coupled with tyramide signal amplification (FISH-TSA) to assess eukaryotic picoplankton composition. Aquat Microb Ecol 28:157–166

    Google Scholar 

  • Olaizola M, Ziemann DA, Bienfang PK, Walsh WA, Conquest LD (1993) Eddy-induced oscillations of the pycnocline affect the floristic composition and depth distribution of phytoplankton in the subtropical Pacific. Mar Biol 116:533–542

    Google Scholar 

  • Örnólfsdóttir EB, Pinckney JL, Tester PA (2003) Quantification of the relative abundance of the toxic dinoflagellate Karenia brevis (Dinophyta), using unique photopigments. J Phycol 39:449–457

    Google Scholar 

  • Partensky F, Blanchot J, Vaulot D (1999) Differential distribution of Prochlorococcus and Synechococcus in oceanic waters: a review. In: Charpy L, Larkum AWD (eds) Marine cyanobacteria. Bull Inst Oceanogr Monaco 19:457–475

    Google Scholar 

  • Pingree RD, Le Cann B (1989) Celtic and Amorican slope and shelf residual currents. Prog Oceanogr 23:303–338

    Google Scholar 

  • Pingree RD, Le Cann B (1990) Structure, strength and seasonality of the slope currents in the Bay of Biscay region. J Mar Biol Assoc UK 70:857–885

    Google Scholar 

  • Pingree RD, Le Cann B (1992a) Three anticyclonic slope water oceanic eddies (SWODDIES) in the southern Bay of Biscay in 1990. Deep-Sea Res 39:1147–1175

    Google Scholar 

  • Pingree RD, Le Cann B (1992b) Anticyclonic eddy X91 in the southern Bay of Biscay, May 1991 to February 1992. J Geophys Res 97:14353–14367

    Google Scholar 

  • Porra RJ, Pfündel EE, Engel N (1997) Metabolism and function of photosynthetic pigments. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, Paris

  • Repeta DJ, Bjørnland T (1997) Preparation of carotenoid standards. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, Paris, pp 239–260

  • Richards KJ, Gould WJ (1998) Ocean weather—Eddies in the sea. In: Summerhayes CP, Thorpe SA (eds) Oceanography: an illustrated guide. Manson, Southampton

  • Rodríguez F, Varela M, Zapata M (2002) Phytoplankton assemblages in the Gerlache and Bransfield Straits (Antarctica Peninsula) determined by light microscopy and CHEMTAX analysis of HPLC pigment data. Deep-Sea Res II 49:723–747

    Google Scholar 

  • Schlüter L, Møhlenberg F, Havskum H, Larsen S (2000) The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios. Mar Ecol Prog Ser 192:49–63

    Google Scholar 

  • Simon N, Barlow RG, Marie D, Partensky F, Vaulot D (1994) Characterization of oceanic photosynthetic picoeukaryotes by flow cytometry. J Phycol 30:922–935

    Google Scholar 

  • Smith CL, Richards KJ, Fasham MJ (1996) The impact of mesoscale eddies on plankton dynamics in the upper ocean. Deep-Sea Res 43:1807–1832

    Google Scholar 

  • Stolte W, Kraay GW, Noordeloos AAM, Riegman R (2000) Genetic and physiological variation in pigment composition of Emiliania huxleyi (Prymnesiophyceae) and the potential use of its pigment ratios as a quantitative physiological marker. J Phycol 36:529–539

    Article  CAS  Google Scholar 

  • Teira E, Serret P, Fernández E (2001) Phytoplankton size-structure, particulate and dissolved organic carbon production and oxygen fluxes through microbial communities in the NW Iberian coastal transition zone. Mar Ecol Prog Ser 219:65–83

    CAS  Google Scholar 

  • Thomsen HA, Buck KR, Chavez FP (1994) Haptophytes as components of marine phytoplankton. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Clarendon, Oxford, pp 187–208

  • Utermöhl H (1958) Zur Vervollkommnung der quantitative Phytoplankton Methodik. Mitt Int Ver Limnol 9:1–38

    Google Scholar 

  • Wright SW, Van den Enden RL (2000) Phytoplankton community structure and stocks in the East Australian marginal ice zone (BROKE survey, January–March 1996) determined by CHEMTAX analysis of HPLC pigment signatures. Deep-Sea Res II 47:2363–2400

    Google Scholar 

  • Zapata M, Garrido JL (1991) Influence of injection conditions in reversed phase high-performance liquid chromatography of chlorophylls and carotenoids. Chromatographia 31:589–594

    CAS  Google Scholar 

  • Zapata M, Rodríguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45

    CAS  Google Scholar 

  • Zapata M, Edvardsen B, Rodríguez F, Maestro MA, Garrido JL (2001) Chlorophyll c 2 monogalactosyldiacylglyceride ester (chl c 2–MGDG). A novel marker pigment for Chrysochromulina species (Prymnesiophyceae). Mar Ecol Prog Ser 219:85–98

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the projects CICYT-MAR96-1872-CO3-03AR and PGIDT-CIMA-99/9 (Xunta de Galicia). The authors thank B. Mouriño for helping with the thermohaline data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rodríguez.

Additional information

Communicated by S.A. Poulet, Roscoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, F., Varela, M., Fernández, E. et al. Phytoplankton and pigment distributions in an anticyclonic slope water oceanic eddy (SWODDY) in the southern Bay of Biscay. Marine Biology 143, 995–1011 (2003). https://doi.org/10.1007/s00227-003-1129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-003-1129-1

Keywords

Navigation