Skip to main content

Advertisement

Log in

The Complexity of Equality Constraint Languages

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We classify the computational complexity of all constraint satisfaction problems where the constraint language is preserved by all permutations of the domain. A constraint language is preserved by all permutations of the domain if and only if all the relations in the language can be defined by boolean combinations of the equality relation. We call the corresponding constraint languages equality constraint languages.

For the classification result we apply the universal-algebraic approach to infinite-valued constraint satisfaction, and show that an equality constraint language is tractable if it admits a constant unary polymorphism or an injective binary polymorphism, and is NP-complete otherwise. We also discuss how to determine algorithmically whether a given constraint language is tractable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.: The complexity of satisfiability problems: refining Schaefer’s theorem. In: Electronical Colloquium on Computational Complexity, 2004

  2. Bodirsky, M.: Constraint satisfaction with infinite domains. PhD thesis, Humboldt-Universität zu Berlin (2004)

  3. Bodirsky, M., Dalmau, V.: Datalog and constraint satisfaction with infinite templates. In: Proceedings of the 23rd International Symposium on Theoretical Aspects of Computer Science (STACS’06). LNCS, vol. 3884, pp. 646–659. Springer, Berlin (2006). A journal version is available from the webpage of the first author, 2006

    Google Scholar 

  4. Bodirsky, M., Kára, J.: The complexity of equality constraint languages. In: Proceedings of the International Computer Science Symposium in Russia (CSR’06). LNCS, vol. 3967, pp. 114–126. Springer, Berlin (2006)

    Google Scholar 

  5. Bodirsky, M., Nešetřil, J.: Constraint satisfaction with countable homogeneous templates. J. Log. Comput. 16(3), 359–373 (2006)

    Article  MATH  Google Scholar 

  6. Bodnarčuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Galois theory for post algebras, part I and II. Cybernetics 5, 243–539 (1969)

    Article  Google Scholar 

  7. Bulatov, A., Krokhin, A., Jeavons, P.G.: Classifying the complexity of constraints using finite algebras. SIAM J. Comput. 34, 720–742 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cameron, P.J.: Oligomorphic Permutation Groups. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  9. Cohen, D., Jeavons, P., Jonsson, P., Koubarakis, M.: Building tractable disjunctive constraints. J. ACM 47(5), 826–853 (2000)

    Article  MathSciNet  Google Scholar 

  10. Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications, vol. 7 (2001)

  11. Dechter, R., van Beek, P.: Local and global relational consistency. TCS 173(1), 283–308 (1997)

    Article  MATH  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: A Guide to NP-completeness. CSLI Press, Stanford (1978)

    Google Scholar 

  13. Geiger, D.: Closed systems of functions and predicates. Pac. J. Math. 27, 95–100 (1968)

    MATH  MathSciNet  Google Scholar 

  14. Heindorf, L.: The maximal clones on countable sets that include all permutations. Algebra Universalis 48, 209–222 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  16. Krasner, M.: Généralisation et analogues de la théorie de Galois. In: Congrés de la Victoire de l’Ass. France avancement des sciences, pp.  54–58, 1945

  17. Nebel, B., Bürckert, H.-J.: Reasoning about temporal relations: a maximal tractable subclass of Allen’s interval algebra. J. ACM 42(1), 43–66 (1995)

    Article  MATH  Google Scholar 

  18. Ottmann, T., Widmayer, P.: Algorithmen und Datenstrukturen. Spektrum Akademischer Verlag (2002)

  19. Pinsker, M.: Maximal clones on uncountable sets that include all permutations. Algebra Universalis 54(2), 129–148 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pinsker, M.: The number of unary clones containing the permutations on an infinite set. Acta Sci. Math. (Szeged) 71, 461–467 (2005)

    MATH  MathSciNet  Google Scholar 

  21. Pinsker, M.: Maximal clones on uncountable sets that include all permutations. Algebra Universalis 54(2), 129–148 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pöschel, R., Kalužnin, L.A.: Funktionen- und Relationenalgebren. Deutscher Verlag der Wissenschaften (1979)

  23. Szendrei, A.: Clones in universal Algebra. Seminaire de mathematiques superieures. Les Presses de L’Universite de Montreal (1986)

  24. Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. In: Proc. ACM Symp. on Theory of Computing, 1985

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Bodirsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodirsky, M., Kára, J. The Complexity of Equality Constraint Languages. Theory Comput Syst 43, 136–158 (2008). https://doi.org/10.1007/s00224-007-9083-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-007-9083-9

Keywords

Navigation