Skip to main content
Log in

Collapsing irreducible 3-manifolds with nontrivial fundamental group

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let M be a closed, orientable, irreducible, non-simply connected 3-manifold. We prove that if M admits a sequence of Riemannian metrics which volume-collapses and whose sectional curvature is locally controlled, then M is a graph manifold. This is the last step in Perelman’s proof of Thurston’s Geometrisation Conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bessières, L., Besson, G., Boileau, M., Maillot, S., Porti, J.: Geometrisation of 3-manifolds (2009, submitted)

  2. Boileau, M., Leeb, B., Porti, J.: Geometrization of 3-dimensional orbifolds. Ann. Math. (2) 162(1), 195–290 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boileau, M., Maillot, S., Porti, J.: Three-Dimensional Orbifolds and Their Geometric Structures. Panoramas et Synthèses (Panoramas and Syntheses), vol. 15. Société Mathématique de France, Paris (2003)

    MATH  Google Scholar 

  4. Boileau, M., Porti, J.: Geometrization of 3-orbifolds of cyclic type. Astérisque 272, 208 (2001). Appendix A by Michael Heusener and Porti

    MathSciNet  Google Scholar 

  5. Cao, J., Ge, J.: A proof of perelman’s collapsing theorem for 3-manifolds, 28 October 2009. arXiv:math.DG/0908.3229

  6. Cao, H.-D., Zhu, X.-P.: A complete proof of the Poincaré and geometrization conjectures—application of the Hamilton-Perelman theory of the Ricci flow. Asian J. Math. 10(2), 165–492 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Cheeger, J., Ebin, D.G.: Comparison Theorems in Riemannian Geometry. North-Holland Mathematical Library, vol. 9. North-Holland, Amsterdam (1975)

    MATH  Google Scholar 

  8. Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math. (2) 96, 413–443 (1972)

    Article  MathSciNet  Google Scholar 

  9. Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17(1), 15–53 (1982)

    MATH  MathSciNet  Google Scholar 

  10. Fukaya, K.: Hausdorff convergence of Riemannian manifolds and its applications. In: Recent Topics in Differential and Analytic Geometry. Adv. Stud. Pure Math., vol. 18, pp. 143–238. Academic Press, Boston (1990)

    Google Scholar 

  11. Gómez-Larrañaga, J.C., González-Acuña, F.: Lusternik-Schnirelmann category of 3-manifolds. Topology 31(4), 791–800 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gromov, M.: Structures Métriques Pour les Variétés Riemanniennes. Textes Mathématiques (Mathematical Texts), vol. 1. CEDIC, Paris (1981). Edited by J. Lafontaine and P. Pansu

    MATH  Google Scholar 

  13. Gromov, M.: Volume and bounded cohomology. Inst. Hautes Études Sci. Publ. Math. 56, 5–99 (1983)

    MathSciNet  Google Scholar 

  14. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    MATH  MathSciNet  Google Scholar 

  15. Hamilton, R.S.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24(2), 153–179 (1986)

    MATH  MathSciNet  Google Scholar 

  16. Hamilton, R.S.: A compactness property for solutions of the Ricci flow. Am. J. Math. 117(3), 545–572 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hempel, J.: 3-Manifolds. Ann. of Math. Studies, vol. 86. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  18. Ivanov, N.V.: Foundations of the theory of bounded cohomology. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 143, 69–109 (1985). Studies in topology, V

    MATH  MathSciNet  Google Scholar 

  19. Ivanov, N.V.: Foundations of the theory of bounded cohomology. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 143, 177–178 (1985). Studies in topology, V

    Google Scholar 

  20. Jaco, W.: Lectures on Three-Manifold Topology. CBMS Regional Conference Series in Mathematics, vol. 43. American Mathematical Society, Providence (1980)

    MATH  Google Scholar 

  21. Kapovitch, V.: Perelman’s stability theorem. In: Surveys in Differential Geometry. Vol. XI. Surv. Differ. Geom., vol. 11, pp. 103–136. Int. Press, Somerville (2007)

    Google Scholar 

  22. Kleiner, B., Lott, J.: Locally collapsed 3-manifolds (in preparation)

  23. Kleiner, B., Lott, J.: Notes on Perelman’s papers. Geom. Topol. 12(5), 2587–2855 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kuessner, T.: Multicomplexes, bounded cohomology and additivity of simplicial volume (2001). math.AT/0109057

  25. McMullen, C.: Iteration on Teichmüller space. Invent. Math. 99(2), 425–454 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Morgan, J., Tian, G.: Ricci Flow and the Poincaré Conjecture. Clay Mathematics Monographs, vol. 3. American Mathematical Society, Providence (2007)

    MATH  Google Scholar 

  27. Morgan, J., Tian, G.: Completion of the proof of the geometrization conjecture (2008). arXiv:0809.4040

  28. Otal, J.-P.: Thurston’s hyperbolization of Haken manifolds. In: Surveys in Differential Geometry, vol. III, Cambridge, MA, 1996, pp. 77–194. Interface Press, Boston (1998)

    Google Scholar 

  29. Otal, J.-P.: The Hyperbolization Theorem for Fibered 3-manifolds. SMF/AMS Texts and Monographs, vol. 7. American Mathematical Society, Providence (2001). Translated from the 1996 French original by Leslie D. Kay

    MATH  Google Scholar 

  30. Perelman, G.: Alexandrov spaces with curvatures bounded from below II. Preprint (1991). http://www.math.psu.edu/petrunin/papers/papers.html

  31. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (2002). math.DG/0211159

  32. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds (2003). math.DG/0307245

  33. Perelman, G.: Ricci flow with surgery on three-manifolds (2003). math.DG/0303109

  34. Peters, S.: Convergence of Riemannian manifolds. Compos. Math. 62(1), 3–16 (1987)

    MATH  Google Scholar 

  35. Petersen, P.: Riemannian Geometry. Graduate Texts in Mathematics, vol. 171. Springer, New York (1998)

    MATH  Google Scholar 

  36. Shioya, T., Yamaguchi, T.: Volume collapsed three-manifolds with a lower curvature bound. Math. Ann. 333(1), 131–155 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Soma, T.: The Gromov invariant of links. Invent. Math. 64(3), 445–454 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  38. Thurston, W.P.: Hyperbolic structures on 3-manifolds. I. Deformation of acylindrical manifolds. Ann. Math. (2) 124(2), 203–246 (1986)

    Article  MathSciNet  Google Scholar 

  39. Yamaguchi, T.: A convergence theorem in the geometry of Alexandrov spaces. In: Actes de la Table Ronde de Géométrie Différentielle, Luminy, 1992. Sémin. Congr., vol. 1, pp. 601–642. Soc. Math. France, Paris (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Besson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessières, L., Besson, G., Boileau, M. et al. Collapsing irreducible 3-manifolds with nontrivial fundamental group. Invent. math. 179, 435–460 (2010). https://doi.org/10.1007/s00222-009-0222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-009-0222-6

Keywords

Navigation