Skip to main content
Log in

Changes in polyphenolic content and antioxidant activity after thermal treatments of grape seed extract and grape pomace

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This study was undertaken to investigate the effect of heat treatment on polyphenolic content and antioxidant activity in grape pomace (GP) and grape seed extract (GSE). GP and GSE were heat treated in a furnace or autoclaved at 100 °C for 15, 30 and 60 min. Structural modifications of the polyphenols during thermal processes were determined by HPLC–MS, and the antioxidant activity was determined by ABTS, DPPH and photochemiluminescence methods. In general, furnace thermal treatment of GSE and GP did not affect the total extractable polyphenols content, tannin content, procyanidin components and the antioxidant activity. Autoclave treatment caused an extensive hydrolysis of gallocatechin (70%), catechin (61%), epicatechin (65%), procyanidin B1 (75%) and procyanidin B2 (73%) in GSE, and an increase in gallic acid (71%), gallocatechin (100%) and epicatechin gallate (129%) in GP. Autoclave treatment did not affect the antioxidant activity of GSE or GP. It can be concluded that the effect of autoclave was more severe than furnace heat treatment modifying the phenolic profile in a different manner depending on the grape seed product used. These modifications were not related with changes in antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Antioxidant activity

ABTS:

3-ethylbenzthiazoline-6-sulphonic acid

C:

Catechin

DM:

Dry matter

DPPH:

2,2-diphenyl-1-picrylhydrazyl

EC:

Epicatechin

ECG:

Epicatechin gallate

EGC:

Epigallocatechin

EGCG:

Epigallocatechin gallate

GA:

Gallic acid

GC:

Gallocatechin

GP:

Grape pomace

GCG:

Gallocatechin gallate

GSE:

Grape seed extract

HPLC:

High performance liquid chromatography

PB1:

Procyanidin B1

PB2:

Procyanidin B2

PCL:

Photochemiluminescence

TEP:

Total extractable polyphenols

TC:

Tannin content

References

  1. González MJ, Torres JL, Medina I (2010) Impact of thermal processing on the activity of gallotannins and condensed tannins from Hamamelis virginiana used as functional ingredient in seafood. J Agric Food Chem 58:4274–4283

    Article  Google Scholar 

  2. Waterhouse AL, Walzem RL (1998) Nutrition of grape phenolics. In: Rice-Evans C, Packer L (eds) Flavonoids in health and disease. Marcel Dekker, New York, pp 349–387

    Google Scholar 

  3. Kim ES, Liang YR, Jin J, Sun QF, Lu JL, Du YY, Lin C (2007) Impact of heating on chemical composition of green tea liquor. Food Chem 103:1263–1267

    Article  CAS  Google Scholar 

  4. Wang H, Helliwell K (2000) Epimerisation of catechins in green tea infusions. Food Chem 70:337–344

    Article  CAS  Google Scholar 

  5. Asami DK, Hong YJ, Barrett DM, Mitchell AE (2003) Processing-induced changes in total phenolics and proanthocyanidins in cling-stone peaches. J Sci Food Agric 83:56–63

    Article  CAS  Google Scholar 

  6. You J, Ahmed M, Goktepe I, Dai J (2006) Peanut skin proanthocyanidins: composition and antioxidant activities as affected by processing. J Food Comp Anal 19:364–371

    Article  Google Scholar 

  7. Awika JM, Dykes L, Gu L, Rooney LW, Prior RL (2003) Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content. J Agric Food Chem 51:5516–5521

    Article  CAS  Google Scholar 

  8. Khanal RC, Howard LR, Brownmiller C, Prior RL (2009) Influence of extrusion processing on procyanidin composition and total anthocyanin contents of blueberry pomace. J Food Sci 74:52–58

    Article  Google Scholar 

  9. Khanal RC, Howard LR, Prior RL (2009) Procyanidin content of grape seed and pomace, and total anthocyanin content of grape pomace as affected by extrusion processing. J Food Sci 74:174–182

    Article  Google Scholar 

  10. Gu L, House SE, Rooney LW, Prior RL (2008) Sorghum extrusion increases bioavailability of catechins in weanling pigs. J Agric Food Chem 56:1283–1288

    Article  CAS  Google Scholar 

  11. Larrauri JA, Rupérez P, Saura-Calixto F (1997) Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J Agric Food Chem 45:1390–1393

    Article  CAS  Google Scholar 

  12. Kim SY, Jeong SM, Park WP, Nam KC, Ahn DU, Lee SC (2006) Effect of heating conditions of grape seeds on the antioxidant activity of grape seed extracts. Food Chem 97:472–479

    Article  CAS  Google Scholar 

  13. Hagerman AE, Riedl K, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46:1887–1892

    Article  CAS  Google Scholar 

  14. Saint-Cricq de Gaulejac N, Provost C, Vivas N (1999) Comparative study of polyphenol scavenging activities assessed by different methods. J Agric Food Chem 2:425–431

    Article  Google Scholar 

  15. Pluma GW, Pascual-Teresa S, Santos-Buelga C, Cheynier V, Williamson G (1998) Antioxidant properties of catechins and proanthcyanidins: effect of polymerization, galloylation and glycolylation. Free Radical Res 29:351–358

    Article  Google Scholar 

  16. Muselik J, García-Alonso M, Martín-López MP, Žemlička M, Rivas-Gonzalo JC (2007) Measurement of antioxidant activity of wine catechins, procyanidins, anthocyanins and pyranoanthocyanins. Int J Mol Sci 8:797–809

    Article  CAS  Google Scholar 

  17. Shoji T, Matsumoto S, Moriichi N, Akiyama H, Kanda T, Ohtake Y, Goda Y (2006) Apple procyanidin oligomers absorption in rats after oral administration: analysis of procyanidins in plasma using the porter method and high-performance liquid chromatography/tandem mass spectrophotometry. J Agric Food Chem 54:509–512

    Article  Google Scholar 

  18. Donovan JL, Manach C, Rios L, Morand C, Scalbert A, Remesy C (2002) Procyanidins are not available in rats fed a single meal containing grape seed extract or the procyanidin dimer B3. Brit J Nutr 87:299–306

    Article  CAS  Google Scholar 

  19. Gonthier MP, Donovan JL, Texier O, Felgines C, Remesy C, Scalbert A (2003) Metabolism of dietary procyanidins in rats. Free Radical Biol Med 35:837–844

    Article  CAS  Google Scholar 

  20. Montreau FR (1972) Sur le dosage des composés phénoliques totaux dans les vins par la methode Folin-Ciocalteau. Connaissance Vigne Vin 24:397–404

    Google Scholar 

  21. Waterman PG, Mole S (1994) Analysis of phenolic plant metabolites. In: Lawton JH, Likens GE (eds) Methods in ecology. Blackwell, Oxford

    Google Scholar 

  22. Re R, Pellegrini N, Proteggente A, Pannala Yang AM, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  23. Pérez-Jimenez J, Arranz S, Tabernero M, Díaz-Rubio ME, Serrano J, Goñi I, Saura-Calixto F (2008) Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: extraction, measurement and expresión of results. Food Res Int 24:274–285

    Article  Google Scholar 

  24. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebens Wiss Technol 28:25–30

    Article  CAS  Google Scholar 

  25. Anastasiadi M, Pratsinis H, Kletsas D, Skaltsounis AL, Haroutounian SA (2010) Bioactive non-coloured polyphenlos content of grapes, wines and vinification by-products: evaluation of the antioxidant activities of their extracts. Food Res Int 48:805–813

    Article  Google Scholar 

  26. Popov IN, Lewin G (1996) Photochemiluminescent detection of antiradical activity; IV: testing of lipid-soluble antioxidants. J Biochem Biophys Meth 31:1–8

    Article  CAS  Google Scholar 

  27. Ross CF, Hoye C, Fernandez-Plotka VC (2011) Influence of heating on the polyphenolic content and antioxidant activity of grape seed flour. J Food Sci 76:884–890

    Article  Google Scholar 

  28. Khanal RC, Howard LR, Prior RL (2010) Effect of heating on the stability of grape and blueberry pomace procyanidins and total anthocyanidins. Food Res Int 43:1464–1469

    Article  CAS  Google Scholar 

  29. Lee SC, Jeong SM, Kim SY, Park HR, Nam KC, Ahn DU (2006) Effect of far-infrared radiation and heat treatment on the antioxidant activity of water extracts from peanut hulls. Food Chem 94:489–493

    Article  CAS  Google Scholar 

  30. Jeong SM, Kim SY, Kim DR, Nam KC, Ahn DU, Lee SC (2004) Effect of heat treatment on the antioxidant activity of peel extracts from citrus peels. J Agric Food Chem 52:3389–3393

    Article  CAS  Google Scholar 

  31. Escarpa A, González MC (2001) Approach to the content of total extractable phenolic compounds from different food sample by comparison of chromatographic and spectrophotometric methods. Analyt Chim Acta 427:119–127

    Article  CAS  Google Scholar 

  32. Davidov-Pardo G, Arozarena I, Marín-Arroyo MR (2011) Stability of polyphenolic extracts from grape seeds after thermal treatments. Eur Food Res Technol 232:211–220

    Article  CAS  Google Scholar 

  33. Zhang D, Hamauzu Y (2004) Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem 88:503–509

    Article  CAS  Google Scholar 

  34. Randhir R, Kwon YI, Shetty K (2008) Effect of thermal processing on phenolics, antioxidant activity and health-relevant functionality of select grain sprouts and seedling. Innov Food Sci Emerg Technol 9:355–364

    Article  CAS  Google Scholar 

  35. White BL, Howard LR, Prior RL (2010) Release of bound procyanidins from cranberry pomace by alkaline hydrolysis. J Agric Food Chem 58:7572–7579

    Article  CAS  Google Scholar 

  36. Pinelo M, Arnous A, Meyer AS (2006) Upgrading of grape skins: significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci Technol 17:579–590

    Article  CAS  Google Scholar 

  37. Le Bourvellec C, Guyot S, Renard CM (2004) Non-covalent interaction between procyanidins and apple cell wall material. Part I: effect of some environmental parameters. Biochim Biophis Acta 1672:192–202

    Article  CAS  Google Scholar 

  38. Renard CM, Baron A, Guyot S, Drilleau JF (2001) Interactions between apple cell walls and native apple polyphenols: quantification and some consequences. Int J Biol Macromol 29:115–125

    Article  CAS  Google Scholar 

  39. Amendola D, De Faveri DM, Spign C (2010) Grape marc phenolics: extraction kinetics, quality and stability of extracts. J Food Eng 97:384–392

    Article  CAS  Google Scholar 

  40. Kim TJ, Silva JL, Kim MK, Jung YS (2010) Enhanced antioxidant capacity and antimicrobial activity of tannic acid by thermal processing. Food Chem 118:740–746

    Article  CAS  Google Scholar 

  41. Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014

    Article  CAS  Google Scholar 

  42. Gahler S, Otto K, Böhm V (2003) Alterations of vitamin C, total phenolics, and antioxidant capacity as affected by processing tomatoes to different products. J Agric Food Chem 51:7962–7968

    Article  CAS  Google Scholar 

  43. Tabart J, Kevers C, Pincemail J, Defraigne JO, Dommes J (2009) Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem 113:1226–1233

    Article  CAS  Google Scholar 

  44. Saucier CT, Waterhouse AL (1999) Synergistic activity of catechin and other antioxidants. J Agric Food Chem 47:4491–4494

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Spanish Ministry of Science and Innovation (MICINN, Spain) and Comunidad Autónoma de Madrid (CAM) for financial support of this investigation, Projects AGL2009-07417/GAN and S2009/AGR-1704 (NEWGAN), respectively, and to Dr. Inmaculada Alvarez for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Brenes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamorro, S., Goñi, I., Viveros, A. et al. Changes in polyphenolic content and antioxidant activity after thermal treatments of grape seed extract and grape pomace. Eur Food Res Technol 234, 147–155 (2012). https://doi.org/10.1007/s00217-011-1621-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-011-1621-7

Keywords

Navigation