Skip to main content
Log in

A thermal treatment to increase the antioxidant capacity of natural phenols: catechin, resveratrol and grape extract cases

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In this work, the critical role of temperature (the values assayed were 22, 37 and 60 °C), the chemical characteristics of the medium (ethanol, methanol and water) and the reaction time on the antiradical capacity of phenolic systems was studied. An initial increase and a following decrease in antiradical activity were observed for catechin and resveratrol solutions in all solvents assayed. The maximum antioxidant activity was higher and occurred in a shorter time as the storage temperature was increased or the solvent polarity was decreased. The maximum values of the latter variable in the catechin and resveratrol cases (reaching an antiradical activity value higher than 50% in comparison with the initial one) were detected when oxidation was carried out in ethanol at 60 °C after 6 and 24 h of storage, respectively. Such variations were due to different reaction pathways. In fact, oxidative polymerization and oxidative formation of hydroxyl groups were found to be responsible for the enhancements of antiradical activity in catechin and resveratrol, respectively. A similar trend with variations of temperature in the different media was also observed in the grape extract case. The evolution of antiradical activity was followed by high-performance liquid chromatography analysis, which pointed to the phenol polymerization of the monophenols detected (catechin, gallic acid, epicatechin and quercetin) as mainly responsible for such variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Leja M, Mareczek A, Ben J (2003) Food Chem 80:303–307

    Article  CAS  Google Scholar 

  2. Vinson JA, Xuehui S, Zubik L (2001) J Agric Food Chem 49:5315–5321

    Article  CAS  PubMed  Google Scholar 

  3. Gardner PT, White TAC, McPhail DB, Duthie GG (2000) Food Chem 68:471–474

    Article  CAS  Google Scholar 

  4. Chen JH, Ho CT (1997) J Agric Food Chem 45:2374–2378

    Article  CAS  Google Scholar 

  5. Dziedzic SZ, Hudson BJF, Barnes G (1985) J Agric Food Chem 33:244–246

    Article  CAS  Google Scholar 

  6. Shrikhande AJ (2000) Food Res Int 33:55–64

    Article  Google Scholar 

  7. Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray SD, Kuszynski CA, Joshi SS, Pruess HG (2000) Toxicology 148:187–197

    Article  CAS  PubMed  Google Scholar 

  8. Gjonca A, Bobak M (1997) Lancet 350:1815–1817

    Article  CAS  PubMed  Google Scholar 

  9. Lu Y, Yeap Foo L (1999) Food Chem 65:1–8

    Article  CAS  Google Scholar 

  10. Shui G, Leong LP (2002) J Chromatog A 977:89–96

    Article  CAS  Google Scholar 

  11. Osada K, Hoshina S, Nakamura S, Sugano M (2001) J Agric Food Chem 48:3823–3829

    Article  Google Scholar 

  12. Roldán A, Palacios V, Caro I, Pérez L (2003) J Agric Food Chem 51:1464–1468

    Article  PubMed  Google Scholar 

  13. Argilés P, López-Soriano J (1998) Sci World 192

  14. Pykett MA, Craig AH, Galley E, Smith C (2001) Int. Patent Appl. WO 2001017495 A1, March 15, 59 pp

  15. Borod M (2001) US Patent 6228387 B1, May 8, 5 pp

  16. Cincott A (2001) Int. Patent Appl. WO 2001051088 A1; July 31, 18 pp

  17. Selleck R (2001) Fruit and vegetable preservative. Int, Patent Appl. WO 2001064041 A1; September 7, 20 pp

  18. Pinto C, García-Barrado JA, Macías P (2003) J Agric Food Chem 51:1653–1657

    Article  CAS  PubMed  Google Scholar 

  19. Pinelo M, Manzocco L, Núñez MJ, Nicoli MC (2004) J Agric Food Chem 52:1177–1180

    Article  CAS  PubMed  Google Scholar 

  20. Nicoli MC, Manzocco L, Calligaris S (2000) J Agr Food Chem 48:4576–4580

    Article  CAS  Google Scholar 

  21. Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Harzfeld PW, Riechel TL (1998) J Agric Food Chem 46:1887–1992

    Article  CAS  PubMed  Google Scholar 

  22. Lu Y, Yeap Foo L (2000) Food Chem 68:81–85

    Article  CAS  Google Scholar 

  23. Singleton VL, Rossi JA Jr (1965) Am J Enol Vitic 16:144–158

    Article  CAS  Google Scholar 

  24. Brand-Williams W, Cuvelier ME, Berset C (1995) Lebensm.-Wiss–Technol 28:5–30

    Article  Google Scholar 

  25. Manzocco L, Anese M, Nicoli MC (1998) Lebensm-Wiss–Technol 31:694–698

    Article  CAS  Google Scholar 

  26. Saint-Cricq de Gaulejac N, Vivas N, Freitas V, Burgeois G (1999) J Sci Food Agric 79:1081–1090

    Article  Google Scholar 

  27. Pinelo M, Manzocco L, Núñez MJ, Nicoli MC (2004) Food Chem 88:201–207

    Article  CAS  Google Scholar 

  28. Madsen HL, Bertelsen G, Skibsted LH (1997) C.-T. (eds) American Chemical Society: Washington, DC pp 176–197

  29. Espin JC (2000) J Food Biochem 24:225–250

    Article  CAS  Google Scholar 

  30. Kantz K, Singleton VL (1990) Am J Enol Vitic 41:223–228

    Article  CAS  Google Scholar 

  31. Peng Z, Hayasaka Y, Iland P, Sefton M, Hoj P, Waters EJ (2001) J Agric Food Chem 49:26–31

    Article  CAS  PubMed  Google Scholar 

  32. Yilmaz Y, Toledo RT (2004) J Agric Food Chem 52:255–260

    Article  CAS  PubMed  Google Scholar 

  33. Pérez-Magariño S, González-San José ML (2004) J Agric Food Chem 52:1181–1189

    Article  PubMed  Google Scholar 

  34. Valgimigli L, Banks JT, Ingold KU, Lusztyk J (1995) J Am Oil Chem Soc 117:9966–9971

    Article  CAS  Google Scholar 

  35. Pedrielli P, Pedulli GF, Skibsted LH (2001) J Agric Food Chem 6:3034–3040

    Article  Google Scholar 

  36. Van der Berg R, Haenen GRRM, Van der Berg M, Bast A (1999) Food Chem 66:511–517

    Article  Google Scholar 

  37. Lorimer JW (1972) CHEMTECH 2:359–363

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Spanish Ministerio de Ciencia y Tecnología (project PPQ2003-06602-CO4-02) and by the Xunta de Galicia (PGIDIT 03TAL20901PR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Pinelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinelo, M., Rubilar, M., Sineiro, J. et al. A thermal treatment to increase the antioxidant capacity of natural phenols: catechin, resveratrol and grape extract cases. Eur Food Res Technol 221, 284–290 (2005). https://doi.org/10.1007/s00217-005-1159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-005-1159-7

Keywords

Navigation