Skip to main content
Log in

Salt-induced ionic liquid-based microextraction using a low cytotoxic guanidinium ionic liquid and liquid chromatography with fluorescence detection to determine monohydroxylated polycyclic aromatic hydrocarbons in urine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel ionic liquid (IL)-based microextraction method has been developed for the determination of four hydroxylated polycyclic aromatic hydrocarbons (OHPAHs) in urine samples. The water soluble IL-based surfactant selected as extraction solvent is decylguanidinium chloride (C10Gu-Cl), the cytotoxicity and micellar behavior of which were evaluated. The proposed salt-induced IL-based preconcentration method simply consists in adding NaClO4 to the aqueous medium containing the IL to promote its water insolubility. The entire method was optimized, requiring the use of only 20 μL of C10Gu-Cl for 10 mL of diluted urine sample (1:10) without any pH adjustment, followed by the addition of NaClO4 to ensure a 5% (w/v) content. A cloudy solution was observed immediately, and after the application of 4 min of vortex and 8 min of centrifugation, the droplet was diluted up to 60 μL with a mixture of acetonitrile:water (30:70) and injected into the liquid chromatograph with fluorescence detection. The method was validated using both synthetic urine and human urine as matrix for the determination of the four OHPAHs. The following analytical features were obtained: detection limits down to 1 ng·L-1 in real urine; inter-day reproducibility (as RSD in %) always lower than 17% when dealing with real urine samples spiked at 80 ng·L-1; and average relative recoveries of 102% in real urine samples at such low spiked levels. Despite the simplicity of the proposed method, it performed successfully with complex urine samples.

Salt-induced IL-based microextraction using a low cytotoxic IL for mono-OHPAHs in urine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kim K-H, Jahan SA, Kabir E, Brown RJC. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int. 2013;60:71–80.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Dong S, Wang H, Tao S, Kiyama R. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ Pollut. 2016;213:809–24.

    Article  CAS  PubMed  Google Scholar 

  3. Rota M, Bosetti C, Boccia S, Boffetta P, La Vecchia C. Occupational exposures to polycyclic aromatic hydrocarbons and respiratory and urinary tract cancers: an updated systematic review and a meta-analysis to 2014. Arch Toxicol. 2014;88:1479–90.

    Article  CAS  PubMed  Google Scholar 

  4. Bolden AL, Rochester JR, Schultz K, Kwiatkowski CF. Polycyclic aromatic hydrocarbons and female reproductive health: a scoping review. Reprod Toxicol. 2017;73:61–74.

    Article  CAS  PubMed  Google Scholar 

  5. Domingo JL, Nadal M. Human dietary exposure to polycyclic aromatic hydrocarbons: a review of the scientific literature. Food Chem Toxicol. 2015;86:144–53.

    Article  CAS  PubMed  Google Scholar 

  6. Seidel A, Spickenheuer A, Straif K, Rihs H-P, Marczynski B, Scherenberg M, et al. New biomarkers of occupational exposure to polycyclic aromatic hydrocarbons. J Toxicol Environ Health. 2008;71:734–45.

    Article  CAS  Google Scholar 

  7. Bartolomé M, Ramos JJ, Cutanda F, Huetos O, Esteban M, Ruiz-Moraga M, et al. Urinary polycyclic aromatic hydrocarbon metabolites levels in a representative sample of the Spanish adult population: the BIOAMBIENT.ES project. Chemosphere. 2015;135:436–46.

    Article  CAS  PubMed  Google Scholar 

  8. Li Z, Sjödin A, Romanoff LC, Horton K, Fitzgerald CL, Eppler A, et al. Evaluation of exposure reduction to indoor air pollution in stove intervention projects in Peru by urinary biomonitoring of polycyclic aromatic hydrocarbon metabolites. Environ Int. 2011;37:1157–63.

    Article  CAS  PubMed  Google Scholar 

  9. Oliveira M, Slezakova K, Magalhães CP, Fernandes A, Teixeira JP, Delerue-Matos C, et al. Individual and cumulative impacts of fire emissions and tobacco consumption on wildland firefighters’ total exposure to polycyclic aromatic hydrocarbons. J Hazard Mater. 2017;334:10–20.

    Article  CAS  PubMed  Google Scholar 

  10. Li Z, Romanoff L, Bartell S, Pittman EN, Trinidad DA, McClean M, et al. Excretion profiles and half-lives of ten urinary polycyclic aromatic hydrocarbon metabolites after dietary exposure. Chem Res Toxicol. 2012;25:1452–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suwan-ampai P, Navas-Acien A, Strickland PT, Agnew J. Involuntary tobacco smoke exposure and urinary levels of polycyclic aromatic hydrocarbons in the United States, 1999 to 2002. Cancer Epidemiol Biomark Prev. 2009;18:884–93.

    Article  CAS  Google Scholar 

  12. Farzan SF, Chen Y, Trachtman H, Trasande L. Urinary polycyclic aromatic hydrocarbons and measures of oxidative stress, inflammation and renal function in adolescents: NHANES 2003–2008. Environ Res. 2016;144:149–57.

    Article  CAS  PubMed  Google Scholar 

  13. Yang P, Sun H, Gong Y-J, Wang Y-X, Liu C, Chen Y-J, et al. Repeated measures of urinary polycyclic aromatic hydrocarbon metabolites in relation to altered reproductive hormones: a cross-sectional study in China. Int J Hyg Environ Health. 2017;220:1340–6.

    Article  CAS  PubMed  Google Scholar 

  14. Hou J, Sun H, Guo Y, Zhou Y, Yin W, Xu T, et al. Associations between urinary monohydroxy polycyclic aromatic hydrocarbons metabolites and Framingham Risk Score in Chinese adults with low lung function. Ecotoxicol Environ Saf. 2018;147:1002–9.

    Article  CAS  PubMed  Google Scholar 

  15. Romanoff LC, Li Z, Young KJ, Blakely NC III, Patterson DG Jr, Sandau CD. Automated solid-phase extraction method for measuring urinary polycyclic aromatic hydrocarbon metabolites in human biomonitoring using isotope-dilution gas chromatography high-resolution mass spectrometry. J Chromatogr B. 2006;835:47–54.

    Article  CAS  Google Scholar 

  16. Li Z, Romanoff LC, Trinidad DA, Hussain N, Jones RS, Porter EN, et al. Measurement of urinary monohydroxy polycyclic aromatic hydrocarbons using automated liquid-liquid extraction and gas chromatography/isotope dilution high-resolution mass spectrometry. Anal Chem. 2006;78:5744–51.

    Article  CAS  PubMed  Google Scholar 

  17. Chetiyanukornkul T, Toriba A, Kameda T, Tang N, Hayakawa K. Simultaneous determination of urinary hydroxylated metabolites of naphthalene, fluorene, phenanthrene, fluoranthene, and pyrene as multiple biomarkers of exposure to polycyclic aromatic hydrocarbons. Anal Bioanal Chem. 2006;386:712–8.

    Article  CAS  PubMed  Google Scholar 

  18. Chauhan A, Bhatia T, Singh A, Saxena PN, Kesavchandran C, Mudiam MKR. Application of nano-sized multi-template imprinted polymer for simultaneous extraction of polycyclic aromatic hydrocarbon metabolites in urine samples followed by ultra-high performance liquid chromatographic analysis. J Chromatogr B. 2015;985:110–8.

    Article  CAS  Google Scholar 

  19. Zhou L, Hu Y, Li G. Conjugated microporous polymers with built-in magnetic nanoparticles for excellent enrichment of trace hydroxylated polycyclic aromatic hydrocarbons in human urine. Anal Chem. 2016;88:6930–8.

    Article  CAS  PubMed  Google Scholar 

  20. Onyemauwa F, Rappaport SM, Sobus JR, Gajdošová D, Wu R, Waaidyanatha S. Using liquid chromatography–tandem mass spectrometry to quantify monohydroxylated metabolites of polycyclic aromatic hydrocarbons in urine. J Chromatogr B. 2009;877:1117–25.

    Article  CAS  Google Scholar 

  21. Fan R, Ramage R, Wang D, Zhou J, Se J. Determination of ten monohydroxylated polycyclic aromatic hydrocarbons by liquid–liquid extraction and liquid chromatography/tandem mass spectrometry. Talanta. 2012;93:383–91.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao G, Chen Y, Wang S, Yu J, Wang X, Xie F, et al. Simultaneous determination of 11 monohydroxylated PAHs in human urine by stir bar sorptive extraction and liquid chromatography/tandem mass spectrometry. Talanta. 2013;116:822–6.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu L, Xu H. Magnetic graphene oxide as adsorbent for the determination of polycyclic aromatic hydrocarbon metabolites in human urine. J Sep Sci. 2014;37:2591–8.

    Article  CAS  PubMed  Google Scholar 

  24. Lankova D, Urbancova K, Sram RJ, Hajslova J, Pulkrabova J. A novel strategy for the determination of polycyclic aromatic hydrocarbon monohydroxylated metabolites in urine using ultra-high-performance liquid chromatography with tandem mass spectrometry. Anal Bioanal Chem. 2016;408:2515–25.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang H, Xu H. Electrospun nanofibers-based online micro-solid phase extraction for the determination of monohydroxy polycyclic aromatic hydrocarbons in human urine. J Chromatogr A. 2017;1521:27–35.

    Article  CAS  PubMed  Google Scholar 

  26. Yang B-C, Fang S-F, Wang X-J, Luo Y, Zhou J-Y, Li Y, et al. Quantification of monohydroxylated polycyclic aromatic hydrocarbons in human urine samples using solid-phase microextraction coupled with glass-capillary nanoelectrospray ionization mass spectrometry. Anal Chim Acta. 2017;973:68–74.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Lu H, Huang H, Liu J, Fang X, Yuan B-F, et al. Quantification of 1-hydroxypyrene in undiluted human urine samples using magnetic solid-phase extraction coupled with internal extractive electrospray ionization mass spectrometry. Anal Chim Acta. 2016;926:72–8.

    Article  CAS  PubMed  Google Scholar 

  28. Rogers RD, Seddon KR. Ionic liquids – solvents of the future? Science. 2003;302:792–3.

    Article  PubMed  Google Scholar 

  29. Clark KD, Emaus MN, Varona M, Bowers AN, Anderson JL. Ionic liquids: solvents and sorbents in sample preparation. J Sep Sci. 2017;41:209–35.

  30. Escudero LB, Grijalba AC, Martinis EM, Wuilloud RG. Bioanalytical separation and preconcentration using ionic liquids. Anal Bioanal Chem. 2013;405:7597–613.

    Article  CAS  PubMed  Google Scholar 

  31. Trujillo-Rodríguez MJ, Rocío-Bautista P, Pino V, Afonso AM. Ionic liquids in dispersive liquid–liquid microextraction. Trac-Trends Anal Chem. 2013;51:87–106.

    Article  CAS  Google Scholar 

  32. Pham TPT, Cho C-W, Yun Y-S. Structural effects of ionic liquids on micro-algal growth inhibition and microbial degradation. Environ Sci Pollut Res. 2016;23:4294–300.

    Article  CAS  Google Scholar 

  33. Yao C, Anderson JL. Dispersive liquid–liquid microextraction using an in situ metathesis reaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds from water. Anal Bioanal Chem. 2009;395:1491–502.

    Article  CAS  PubMed  Google Scholar 

  34. Baghadi M, Shemirani F. In situ solvent formation microextraction based on ionic liquids: a novel sample preparation technique for determination of inorganic species in saline solutions. Anal Chim Acta. 2009;634:186–91.

    Article  CAS  Google Scholar 

  35. Pacheco-Fernández I, Pino V, Ayala JH, Afonso AM. Guanidinium ionic liquid-based surfactants as low cytotoxic extractants: analytical performance in an in-situ dispersive liquid–liquid microextraction method for determining personal care products. J Chromatogr A. 2017; https://doi.org/10.1016/j.chroma.2017.04.061.

  36. Yu J, Zhang S, Dai Y, Lu X, Lei Q, Fang W. Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids. J Hazard Mater. 2016;307:73–81.

    Article  CAS  PubMed  Google Scholar 

  37. Hankari SE, Hesemann P. Guanidinium vs ammonium surfactants in soft-templating approaches: nanostructured silica and zwitterionic i-silica from complementary precursor–surfactant ion pairs. Eur J Inorg Chem. 2012;2012:5288–98.

    Article  CAS  Google Scholar 

  38. Baltazar QQ, Chandawalla J, Sawyer K, Anderson JL. Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids. Colloid Surf A – Physicochem Eng Asp. 2007;302:150–6.

    Article  CAS  Google Scholar 

  39. Haglock-Adler CJ, Hurley A, Strathmann FG. Use of synthetic urine as a matrix substitute for standard and quality control materials in the clinical assessment of iodine by inductively coupled plasma mass spectrometry. Clin Biochem. 2014;47:80–2.

    Article  CAS  PubMed  Google Scholar 

  40. Nacham O, Martín-Pérez A, Steyer DJ, Trujillo-Rodríguez MJ, Anderson JL, Pino V, et al. Interfacial and aggregation behavior of dicationic and tricationic ionic liquid-based surfactants in aqueous solution. Colloid Surf A – Physicochem Eng Asp. 2015;469:224–34.

    Article  CAS  Google Scholar 

  41. Sifaoui I, López-Arencibia A, Martín-Navarro CM, Reyes-Batlle M, Wagner C, Chiboub O, et al. Programmed cell death in Acanthamoeba castellanii Neff induced by several molecules present in olive leaf extracts. PLoS One. 2017;12:e0183795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pacheco-Fernández I, González-Hernández P, Pino V, Ayala JH, Afonso AM. Ionic liquid-based surfactants: a step forward. In: Eftekhari A, editor. Ionic liquid devices, smart materials no. 28. London: The Royal Society of Chemistry; 2018. p. 53–78.

    Google Scholar 

  43. Trujillo-Rodríguez MJ, González-Hernández P, Pino V. Analytical applications of ionic liquid-based surfactants in separation science. In: Paul BK, Moulik SP, editors. Ionic liquid-based surfactant science: formulation, characterization, and applications. Hoboken: Wiley; 2015. p. 475–502.

    Chapter  Google Scholar 

  44. Dong B, Zhao X, Zheng L, Zhang J, Li N, Inoue T. Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: micellization and characterization of micelle microenvironment. Colloid Surf A – Physicochem Eng Asp. 2008;317:666–72.

    Article  CAS  Google Scholar 

  45. Song Y, Li Q, Li Y. Self-aggregation and antimicrobial activity of alkylguanidium salts. Colloid Surf A – Physicochem Eng Asp. 2012;393:11–6.

    Article  CAS  Google Scholar 

  46. Bouchal R, Hamel A, Hesemann P, In M, Prelot B, Zajac J. Micellization behavior of long-chain substituted alkylguanidinium surfactants. Int J Mol Sci. 2016;17:223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Seoud OAE, Pires PAR, Abdel-Moghny T, Bastos EL. Synthesis and micellar properties of surface-active ionic liquids: 1-Alkyl-3-methylimidazolium chlorides. J Colloid Interface Sci. 2007;313:296–304.

    Article  CAS  PubMed  Google Scholar 

  48. Pernak J, Borucka N, Walkiewicz F, Markiewicz B, Fochtman P, Stolte S, et al. Synthesis, toxicity, biodegradability, and physicochemical properties of 4-benzyl-4-methylmorpholinium-based ionic liquids. Green Chem. 2011;13:2901–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I.P.-F. is thankful for her PhD research contract from ULL-La Caixa fellowship. V.P. thanks the Spanish Ministry of Economy and Competitiveness (MINECO) for the project MAT2014-57465-R. J.L.-M. acknowledges the grant “Red de Investigation Colaborativa en Enfermedades Tropicales” RICET (project RD16/0027/0001 of the program of “Redes Temáticas de Investigación Cooperativa”, FIS, Spanish Ministry of Health) and “Ayudas Plan Propio de la Universidad de La Laguna 2017 (proyectos puente I+D+i)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Pino.

Ethics declarations

Volunteers signed an individual informed consent in order to use their urine samples in this study. This study was approved by the Universidad de La Laguna ethical committee and has been performed in accordance with Spanish ethical standards in research.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Ionic Liquids as Tunable Materials in (Bio)Analytical Chemistry with guest editors Jared L. Anderson and Kevin D. Clark.

Electronic supplementary material

ESM 1

(PDF 307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacheco-Fernández, I., Pino, V., Lorenzo-Morales, J. et al. Salt-induced ionic liquid-based microextraction using a low cytotoxic guanidinium ionic liquid and liquid chromatography with fluorescence detection to determine monohydroxylated polycyclic aromatic hydrocarbons in urine. Anal Bioanal Chem 410, 4701–4713 (2018). https://doi.org/10.1007/s00216-018-0946-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0946-5

Keywords

Navigation