Skip to main content
Log in

Ion mobility–mass spectrometry as a tool to investigate protein–ligand interactions

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ion mobility–mass spectrometry (IM-MS) is a powerful tool for the simultaneous analysis of mass, charge, size, and shape of ionic species. It allows the characterization of even low-abundant species in complex samples and is therefore particularly suitable for the analysis of proteins and their assemblies. In the last few years even complex and intractable species have been investigated successfully with IM-MS and the number of publications in this field is steadily growing. This trend article highlights recent advances in which IM-MS was used to study protein–ligand complexes and in particular focuses on the catch and release (CaR) strategy and collision-induced unfolding (CIU).

Native mass spectrometry and ion mobility-mass spectrometry are versatile tools to follow the stoichiometry, energetics, and structural impact of protein-ligand binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marcoux J, Robinson CV. Twenty years of gas phase structural biology. Structure. 2013;21(9):1541–50.

    Article  CAS  Google Scholar 

  2. Seo J, Hoffmann W, Warnke S, Bowers MT, Pagel K. von Helden G. Retention of native protein structures in the absence of solvent: a coupled ion mobility and spectroscopic study. Angew Chem Int Ed. 2016;55(45):14173–6.

    Article  CAS  Google Scholar 

  3. Robinson CV, Chung EW, Kragelund BB, Knudsen J, Aplin RT, Poulsen FM, et al. Probing the nature of noncovalent interactions by mass spectrometry. A study of protein−CoA ligand binding and assembly. J Am Chem Soc. 1996;118(36):8646–53.

    Article  CAS  Google Scholar 

  4. Liu L, Bagal D, Kitova EN, Schnier PD, Klassen JS. Hydrophobic protein−ligand interactions preserved in the gas phase. J Am Chem Soc. 2009;131(44):15980–1.

    Article  CAS  Google Scholar 

  5. Hall Z, Robinson C. Do charge state signatures guarantee protein conformations? J Am Soc Mass Spectrom. 2012;23(7):1161–8.

    Article  CAS  Google Scholar 

  6. Daniel JM, Friess SD, Rajagopalan S, Wendt S, Zenobi R. Quantitative determination of noncovalent binding interactions using soft ionization mass spectrometry. Int J Mass Spectrom. 2002;216(1):1–27.

    Article  CAS  Google Scholar 

  7. Kitova E, El-Hawiet A, Schnier P, Klassen J. Reliable determinations of protein–ligand interactions by direct ESI-MS measurements. Are we there yet? J Am Soc Mass Spectrom. 2012;23(3):431–41.

    Article  CAS  Google Scholar 

  8. Uetrecht C, Rose RJ, van Duijn E, Lorenzen K, Heck AJR. Ion mobility mass spectrometry of proteins and protein assemblies. Chem Soc Rev. 2010;39(5):1633–55.

    Article  CAS  Google Scholar 

  9. Konermann L, Ahadi E, Rodriguez AD, Vahidi S. Unraveling the mechanism of electrospray ionization. Anal Chem. 2013;85(1):2–9.

    Article  CAS  Google Scholar 

  10. Mason EA, Schamp HW. Mobility of gaseous lons in weak electric fields. Ann Phys. 1958;4(3):233–70.

    Article  CAS  Google Scholar 

  11. Scarff CA, Thalassinos K, Hilton GR, Scrivens JH. Travelling wave ion mobility mass spectrometry studies of protein structure: biological significance and comparison with X-ray crystallography and nuclear magnetic resonance spectroscopy measurements. Rapid Commun Mass Spectrom. 2008;22(20):3297–304.

    Article  CAS  Google Scholar 

  12. Lanucara F, Holman SW, Gray CJ, Eyers CE. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem. 2014;6:281–94.

    Article  CAS  Google Scholar 

  13. Bush MF, Hall Z, Giles K, Hoyes J, Robinson CV, Ruotolo BT. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal Chem. 2010;82(22):9557–65.

    Article  CAS  Google Scholar 

  14. Fernandez-Lima F, Kaplan DA, Suetering J, Park MA. Gas-phase separation using a trapped ion mobility spectrometer. Int J Ion Mobil Spectrom. 2011;14(2):93–8.

    Article  Google Scholar 

  15. Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004;18(20):2401–14.

    Article  CAS  Google Scholar 

  16. May JC, Goodwin CR, Lareau NM, Leaptrot KL, Morris CB, Kurulugama RT, et al. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal Chem. 2014;86(4):2107–16.

    Article  CAS  Google Scholar 

  17. Scott DE, Coyne AG, Hudson SA, Abell C. Fragment-based approaches in drug discovery and chemical biology. Biochemistry. 2012;51(25):4990–5003.

    Article  CAS  Google Scholar 

  18. Murray CW, Rees DC. The rise of fragment-based drug discovery. Nat Chem. 2009;1(3):187–92.

    Article  CAS  Google Scholar 

  19. Wyttenbach T, Grabenauer M, Thalassinos K, Scrivens JH, Bowers MT. The effect of calcium ions and peptide ligands on the relative stabilities of the calmodulin dumbbell and compact structures. J Phys Chem B. 2010;114(1):437–47.

    Article  CAS  Google Scholar 

  20. Warnke S, von Helden G, Pagel K. Protein structure in the gas phase: the influence of side-chain microsolvation. J Am Chem Soc. 2013;135(4):1177–80.

    Article  CAS  Google Scholar 

  21. Göth M, Lermyte F, Schmitt XJ, Warnke S, von Helden G, Sobott F, et al. Gas-phase microsolvation of ubiquitin: investigation of crown ether complexation sites using ion mobility-mass spectrometry. Analyst. 2016;141(19):5502–10.

    Article  Google Scholar 

  22. van Duijn E, Barbu IM, Barendregt A, Jore MM, Wiedenheft B, Lundgren M, et al. Native tandem and ion mobility mass spectrometry highlight structural and modular similarities in clustered-regularly-interspaced shot-palindromic-repeats (CRISPR)-associated protein complexes from Escherichia coli and Pseudomonas aeruginosa. Mol Cell Proteomics. 2012;11(11):1430–41.

    Article  Google Scholar 

  23. Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT, Baldwin AJ, et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature. 2014;510(7503):172–5.

    Article  CAS  Google Scholar 

  24. Reading E, Liko I, Allison TM, Benesch JLP, Laganowsky A, Robinson CV. The role of the detergent micelle in preserving the structure of membrane proteins in the gas phase. Angew Chem Int Ed. 2015;54(15):4577–81.

    Article  CAS  Google Scholar 

  25. Young LM, Saunders JC, Mahood RA, Revill CH, Foster RJ, Tu L-H, et al. Screening and classifying small molecule inhibitors of amyloid formation using ion mobility spectrometry-mass spectrometry. Nat Chem. 2015;7(1):73–81.

    Article  CAS  Google Scholar 

  26. Cheng X, Chen R, Bruce JE, Schwartz BL, Anderson GA, Hofstadler SA, et al. Using electrospray ionization FTICR mass spectrometry to study competitive binding of inhibitors to carbonic anhydrase. J Am Chem Soc. 1995;117(34):8859–60.

    Article  CAS  Google Scholar 

  27. Gao J, Cheng X, Chen R, Sigal GB, Bruce JE, Schwartz BL, et al. Screening derivatized peptide libraries for tight binding inhibitors to carbonic anhydrase II by electrospray ionization-mass spectrometry. J Med Chem. 1996;39(10):1949–55.

    Article  CAS  Google Scholar 

  28. Wigger M, Eyler JR, Benner SA, Li W, Marshall AG. Fourier transform-ion cyclotron resonance mass spectrometric resolution, identification, and screening of non-covalent complexes of Hck Src homology 2 domain receptor and ligands from a 324-member peptide combinatorial library. J Am Soc Mass Spectrom. 2002;13(10):1162–9.

    Article  CAS  Google Scholar 

  29. Cederkvist FH, Zamfir AD, Bahrke S, Eijsink VGH, Sørlie M, Peter-Katalinić J, et al. Identification of a high-affinity-binding oligosaccharide by (+) nanoelectrospray quadrupole time-of-flight tandem mass spectrometry of a noncovalent enzyme–ligand complex. Angew Chem Int Ed. 2006;45(15):2429–34.

    Article  CAS  Google Scholar 

  30. El-Hawiet A, Shoemaker GK, Daneshfar R, Kitova EN, Klassen JS. Applications of a catch and release electrospray ionization mass spectrometry assay for carbohydrate library screening. Anal Chem. 2012;84(1):50–8.

    Article  CAS  Google Scholar 

  31. Han L, Kitova EN, Tan M, Jiang X, Klassen JS. Identifying carbohydrate ligands of a norovirus P particle using a catch and release electrospray ionization mass spectrometry assay. J Am Soc Mass Spectrom. 2014;25(1):111–9.

    Article  CAS  Google Scholar 

  32. Zhong Y, Han L, Ruotolo BT. Collisional and Coulombic unfolding of gas-phase proteins: high correlation to their domain structures in solution. Angew Chem Int Ed. 2014;53(35):9209–12.

    Article  CAS  Google Scholar 

  33. Zhang H, Liu H, Lu Y, Wolf NR, Gross ML, Blankenship RE. Native mass spectrometry and ion mobility characterize the orange carotenoid protein functional domains. Biochim Biophys Acta. 2016;1857(6):734–9.

    Article  CAS  Google Scholar 

  34. Hopper JTS, Oldham NJ. Collision induced unfolding of protein ions in the gas phase studied by ion mobility-mass spectrometry: the effect of ligand binding on conformational stability. J Am Soc Mass Spectrom. 2009;20(10):1851–8.

    Article  CAS  Google Scholar 

  35. Hyung S-J, Robinson CV, Ruotolo BT. Gas-phase unfolding and disassembly reveals stability differences in ligand-bound multiprotein complexes. Chem Biol. 2009;16(4):382–90.

    Article  CAS  Google Scholar 

  36. Allison TM, Reading E, Liko I, Baldwin AJ, Laganowsky A, Robinson CV. Quantifying the stabilizing effects of protein-ligand interactions in the gas phase. Nat Commun. 2015;6:8551–1.

  37. Rabuck JN, Hyung S-J, Ko KS, Fox CC, Soellner MB, Ruotolo BT. Activation state-selective kinase inhibitor assay based on ion mobility-mass spectrometry. Anal Chem. 2013;85(15):6995–7002.

    Article  CAS  Google Scholar 

  38. Eschweiler JD, Martini RM, Ruotolo BT. Chemical probes and engineered constructs reveal a detailed unfolding mechanism for a solvent-free multidomain protein. J Am Chem Soc. 2017;139(1):534–40.

    Article  CAS  Google Scholar 

  39. Liu Y, Cong X, Liu W, Laganowsky A. Characterization of membrane protein–lipid interactions by mass spectrometry ion mobility mass spectrometry. J Am Soc Mass Spectrom. 2017;28(4):579–86.

    Article  CAS  Google Scholar 

  40. Ev D, Barendregt A, Synowsky S, Versluis C, Heck AJR. Chaperonin complexes monitored by ion mobility mass spectrometry. J Am Chem Soc. 2009;131(4):1452–9.

    Article  Google Scholar 

  41. Zhou M, Jones CM, Wysocki VH. Dissecting the large noncovalent protein complex GroEL with surface-induced dissociation and ion mobility–mass spectrometry. Anal Chem. 2013;85(17):8262–7.

    Article  CAS  Google Scholar 

  42. Sivalingam GN, Yan J, Sahota H, Thalassinos K. Amphitrite: a program for processing travelling wave ion mobility mass spectrometry data. Int J Mass Spectrom. 2013;345–347:54–62.

    Article  Google Scholar 

  43. Marty MT, Baldwin AJ, Marklund EG, Hochberg GKA, Benesch JLP, Robinson CV. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal Chem. 2015;87(8):4370–6.

    Article  CAS  Google Scholar 

  44. Eschweiler JD, Rabuck-Gibbons JN, Tian Y, Ruotolo BT. CIUSuite: a quantitative analysis package for collision induced unfolding measurements of gas-phase protein ions. Anal Chem. 2015;87(22):11516–22.

    Article  CAS  Google Scholar 

  45. Sun J, Kitova EN, Wang W, Klassen JS. Method for distinguishing specific from nonspecific protein-ligand complexes in nanoelectrospray ionization mass spectrometry. Anal Chem. 2006;78(9):3010–8.

    Article  CAS  Google Scholar 

  46. Shimon L, Sharon M, Horovitz A. A method for removing of nonspecific binding on the distribution of binding stoichiometries: application to mass spectrometry data. Biophys J. 2010;99(5):1645–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Melanie Göth thanks Bayer Pharma AG for funding a PhD fellowship. The authors acknowledge Dr. Oren Moscovitz and Dr. Benno Kuropka for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Pagel.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göth, M., Pagel, K. Ion mobility–mass spectrometry as a tool to investigate protein–ligand interactions. Anal Bioanal Chem 409, 4305–4310 (2017). https://doi.org/10.1007/s00216-017-0384-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0384-9

Keywords

Navigation