Skip to main content
Log in

Analytical characterization of mannosylerythritol lipid biosurfactants produced by biosynthesis based on feedstock sources from the agrofood industry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mannosylerythritol lipids (MELs) are currently one of the most promising biosurfactants because of their multifunctional applications and good biodegradability. Depending on the yeast strain and the feedstock used for the fermentation process, structural variations in the MELs obtained occur. Therefore, MELs produced by Pseudozyma aphidis DSMZ 70725 with a soybean oil feedstock were characterized by chromatography and mass spectrometry (MS). Column chromatography with silica provided fractionation of the different types of MEL. High-performance liquid chromatography combined with MS was employed for the analysis of the MEL fractions and crude mixtures. A characteristic MS pattern for the MELs was obtained and indications of the presence of new MEL homologues, showing the incorporation of longer and more unsaturated fatty acid chains than previously reported, were given. Gas chromatography–MS analysis confirmed the presence of such unsaturated fatty acid chains in the MELs, demonstrating the incorporation of fatty acids with lengths ranging from C8 to C14 and with up to two unsaturations per chain. The incorporation of C16 and C18 fatty acid chains requires further investigation. MS/MS data allowed the unambiguous identification of the fatty acids present in the MELs. The product ion spectra also revealed the presence of a new isomeric class of MELs, bearing an acetyl group on the erythritol moiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schramm LL, Stasius EN, Gerrard Marangoni D (2003) Ann Rep Prog Chem C 99:3–48

    Article  CAS  Google Scholar 

  2. Banat IM, Makkar RS, Cameotra SS (2000) Appl Environ Microbiol 53:495–508

    CAS  Google Scholar 

  3. Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants Curr Sci 94:736–747

    CAS  Google Scholar 

  4. Mukherjee S, Das P, Sen R (2006) Trends Biotechnol 24:509–515

    Article  CAS  Google Scholar 

  5. Cameotra SS, Makkar RS (2004) Curr Opin Microbiol 7:262–266

    Article  CAS  Google Scholar 

  6. Desai JD, Banat IM (1997) Microbiol Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  7. Van Bogaert I, Saerens K, De Muynck C, Develter D, Soetaert W (2007) Appl Microbiol Biotechnol 76:23–34

    Article  Google Scholar 

  8. Sullivan ER (1998) Curr Opin Biotechnol 9:263–269

    Article  CAS  Google Scholar 

  9. Silva GP, Mack M, Contiero J (2009) Biotechnol Adv 27:30–39

    Article  Google Scholar 

  10. Lang S (2002) Curr Opin Colloid Interface Sci 7:12–20

    Article  CAS  Google Scholar 

  11. Kitamoto D, Isoda H, Nakahara T (2002) J Biosci Bioeng 94:187–201

    CAS  Google Scholar 

  12. Im JH, Yanagishita H, Ikegami T, Takeyama Y, Idemoto Y, Koura N, Kitamoto D (2003) J Biomed Mater Res 65A:379–385

    Article  CAS  Google Scholar 

  13. Kitamoto D, Ghosh SGO, Nakatani Y (2000) Chem Commun 1861–862

  14. Kitamoto D, Yanagishita H, Endo A, Nakaiwa M, Nakane M, Akiya T (2001) Biotechnol Prog 17:362–365

    Article  CAS  Google Scholar 

  15. Isoda H, Kitamoto D, Shinmoto H, Matsumura M, Nakahara T (1997) Biosci Biotechnol Biochem 61:609–614

    Article  CAS  Google Scholar 

  16. Isoda H, Shinmoto H, Kitamoto D, Matsumura M, Nakahara T (1997) Lipids 32:263–271

    Article  CAS  Google Scholar 

  17. Wakamatsu Y, Zhao X, Jin C, Day N, Shibahara M, Nomura N, Nakahara T, Murata T, Yokoyama KK (2001) Eur J Biochem 268:374–383

    Article  CAS  Google Scholar 

  18. Zhao X, Wakamatsu Y, Shibahara M, Nomura N, Geltinger C, Nakahara T, Murata T, Yokoyama KK (1999) Cancer Res 59:482–486

    CAS  Google Scholar 

  19. Arutchelvi JI, Bhaduri S, Uppara PV, Doble M (2008) J Ind Microbiol Biotechnol 35:1559–1570

    Article  CAS  Google Scholar 

  20. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2008) J Biosci Bioeng 105:493–502

    Article  CAS  Google Scholar 

  21. Rau U, Nguyen LA, Roeper H, Koch H, Lang S (2005) Appl Microbiol Biotechnol 68:607–613

    Article  CAS  Google Scholar 

  22. Morita T, Masaaki K, Fukuoka T, Imura T, Kitamoto D (2006) Appl Microbiol Biotechnol 73:305–313

    Article  CAS  Google Scholar 

  23. Worakitkanchanakul W, Imura T, Fukuoka T, Morita T, Sakai H, Abe M, Rujiravanit R, Chavadej S, Minamikawa H, Kitamoto D (2009) Colloids Surf B Biointerfaces 68:207–212

    Article  CAS  Google Scholar 

  24. Fukuoka T, Morita T, Konishi M, Imura T, Kitamoto D (2008) Carbohydr Res 343:555–560

    Article  CAS  Google Scholar 

  25. Kitamoto D, Akiba S, Hioki C, Tabuchi T (1990) Agric Biol Chem 54:31–36

    CAS  Google Scholar 

  26. Fukuoka T, Kawamura M, Morita T, Imura T, Sakai H, Abe M, Kitamoto D (2008) Carbohydr Res 343:2947–2955

    Article  CAS  Google Scholar 

  27. Hewald S, Linne U, Scherer M, Marahiel MA, Kamper J, Bolker M (2006) Appl Environ Microbiol 72:5469–5477

    Article  CAS  Google Scholar 

  28. Konishi M, Morita T, Fukuoka T, Imura T, Kakugawa K, Kitamoto D (2007) Appl Microbiol Biotechnol 75:521–531

    Article  CAS  Google Scholar 

  29. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2007) J Biosci Bioeng 104:78–81

    Article  CAS  Google Scholar 

  30. Rau U, Nguyen LA, Roeper H, Koch H, Lang S (2005) Eur J Lipid Sci Technol 107:373–380

    Article  CAS  Google Scholar 

  31. Banoub JH, Newton RP, Esmans E, Ewing DF, Mackenzie G (2005) Chem Rev 105:1869–1915

    Article  CAS  Google Scholar 

  32. Peter-Katalinic J (2005) Methods Enzymol 405:139–171

    Article  CAS  Google Scholar 

  33. Wiesner J, Premsler T, Sickmann A (2008) Proteomics 8:4466–4483

    Article  CAS  Google Scholar 

  34. Cuyckens F, Claeys M (2004) J Mass Spectrom 39:1–15

    Article  CAS  Google Scholar 

  35. Fukuoka T, Morita T, Konishi M, Imura T, Kitamoto D (2007) Biotechnol Lett 29:1111–1118

    Article  CAS  Google Scholar 

  36. Rau U, Nguyen LA, Schulz S, Wray V, Nimtz M, Roeper H (2005) Appl Microbiol Biotechnol 66:551–559

    Article  CAS  Google Scholar 

  37. Kitamoto D, Yanagishita H, Haraya K, Kitamoto HK (1998) Biotechnol Lett 20:813–818

    Article  CAS  Google Scholar 

  38. Kitamoto D, Isoda H, Nakahara T (2002) J Biosci Bioeng 94:187–201

    CAS  Google Scholar 

Download references

Acknowledgements

M.O. is grateful to the team at the University of Valencia for allowing him to spend some months in their laboratory. T.G. and A.C. acknowledge Research Foundation Flanders (FWO) for financial support. The authors would like to thank Dionex for providing the Acclaim surfactant column and Waters for the provision of the hydrophilic interaction liquid chromatography column. This study was financed by the University of Antwerp (KARAMEL UA-BOF project). Filip Lemière thanks the Hercules foundation for financial support in purchasing the MS instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Covaci.

Additional information

Footnote: Published in the special issue Advances in Analytical Separations with Guest Editors Yolanda Pico and Joan O. Grimalt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onghena, M., Geens, T., Goossens, E. et al. Analytical characterization of mannosylerythritol lipid biosurfactants produced by biosynthesis based on feedstock sources from the agrofood industry. Anal Bioanal Chem 400, 1263–1275 (2011). https://doi.org/10.1007/s00216-011-4741-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4741-9

Keywords

Navigation