Skip to main content
Log in

An efficient approach for the isolation, identification and evaluation of antimicrobial plant components on an analytical scale, demonstrated by the example of Radix imperatoriae

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Using Radix imperatoriae (the root of masterwort) as an example, we describe an efficient approach for the isolation, identification and evaluation of bioactive plant components on an analytical scale. The extraction of Radix imperatoriae with ethyl acetate was enhanced by the application of ultrasound oscillations. This rhizome extract was applied to three pathogenic bacteria (Bacillus cereus, Escherichia coli, and Staphylococcus aureus) to determine its antimicrobial activity. Disk diffusion was utilized to determine susceptibility. The extract components were separated using a series of chromatography approaches (semi-preparative RP-HPLC, or RP-HPLC on an analytical scale), followed by testing. All fractions were analyzed by LC-UV-ESI-MS and 600 MHz microcoil 1H NMR spectroscopy. Among other findings, in the fraction with the highest antibacterial activity we were able to identify oxypeucedanin and oxypeucedanin hydrate. Subsequent analysis revealed that only oxypeucedanin hydrate had antibacterial activity, whereas oxypeucedanin itself was inactive at the concentrations applied. Furthermore, oxypeucedanin hydrate appears to be largely, or exclusively, a by-product of sample preparation, since it is either not synthesized by the plant as a second metabolite or is produced by it in only very small quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8a–b

Similar content being viewed by others

References

  1. Ramawat KG, Merillon JM (eds)(2008) Bioactive molecules and medicinal plants. Springer, Berlin

  2. Butenandt A, Marten A (1932) Über die Inhaltsstoffe der Meisterwurz (Imperatoria Ostruthium). Wiley-VCH, Weinheim, pp 187–210

  3. Khaled SA, Szendrli K, Novak I (1974) Phytochemistry 14:1461–1462

    Article  Google Scholar 

  4. Hiermann A, Schantl D, Zsilavecz MS, Reine J (1996) Phytochemistry 43:881–883

    Article  CAS  Google Scholar 

  5. Reisch J, Khaled SA, Szendrei K, Novak I (1975) Phytochemistry 14:1889–1890

    Article  CAS  Google Scholar 

  6. Hörhammer L, Wagner H, Heydweiller D (1969) Phytochemistry 8:1605

    Article  Google Scholar 

  7. Reisch J, Khaled SA, Szendrei K, Novak I (1975) Phytochemistry 14:1137–1138

    Article  CAS  Google Scholar 

  8. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Nat Protoc 1:387

    Article  CAS  Google Scholar 

  9. Monton MRN, Soga T (2007) J Chromatogr A 1168:237

    Article  CAS  Google Scholar 

  10. Bajad SU, Lu WY, Kimball EH, Yuan J, Peterson C, Rabinowitz JD (2006) J Chromatogr A 1125:76

    Article  CAS  Google Scholar 

  11. Albert K (ed)(2002) On-line LC-NMR and related techniques. Wiley, Chichester

  12. Lewis IA, Schommer SC, Hodis B, Robb KA, Tonelli M, Westler WM, Suissman MR, Markley JL (2007) Anal Chem 79:9385

    Article  CAS  Google Scholar 

  13. Holtin K, Kuehnle M, Rehbein J, Schuler P, Nicholson G, Albert K (2009) Anal Bioanal Chem 395:1613–1622

    Article  CAS  Google Scholar 

  14. Want EJ, Cravatt BF, Siuzdak G (2005) Chembiochem 6:1941

    Article  CAS  Google Scholar 

  15. Kimball E, Rabinowitz JD (2006) Anal Biochem 358:273

    Article  CAS  Google Scholar 

  16. Want EJ, Nordstrom A, Morita H, Siuzdak G (2007) J Proteom Res 6:459

    Article  CAS  Google Scholar 

  17. Rabinowitz JD (2007) Exp Rev Proteom 4:187

    Article  CAS  Google Scholar 

  18. Rabinowitz JD, Kimball E (2007) Anal Chem 79:6167

    Article  CAS  Google Scholar 

  19. Albert K, Bayer E (1992) Patonay G (ed) High-performance liquid chromatography proton nuclear magnetic resonance on-line coupling. VCH, New York, pp 197–229

  20. Grynbaum MD, Meyer C, Putzbach K, Rehbein J, Albert K (2007) J Chromatogr A 1156:80–86

    Article  CAS  Google Scholar 

  21. Grynbaum MD, Kreidler D, Rehbein J, Purea A, Schuler P, Schaal W, Czesla H, Webb A, Volker S, Albert K (2007) Anal Chem 79:2708–2713

    Article  CAS  Google Scholar 

  22. Shadomy S, Pfalle MA (1991) Manual of clinical microbiology, 5th edn. American Society for Microbiology, Washington

  23. National Committee for Clinical Laboratory Standards (1998) Performance standards for antimicrobial susceptibility tests, 6th edn (approved standard; document M2-A6, vol. 18, no. 1). National Committee for Clinical Laboratory Standards, Villanova

  24. Pfaller MA, Boyken L, Messer SA, Hollis RJ, Diekema DJ (2004) J Clin Microbiol 42:1288–1289

    Article  CAS  Google Scholar 

  25. Raitza M, Pursch M, Strohschein S, Albert K, Sander LC (1998) GIT Lab J 2:237–241

    Google Scholar 

  26. Albert K, Händel H, Pursch M, Strohschein S (1996) In: Pesek JJ, Matyska MT, Abuelafiya RR (eds) Chemically modified surfaces, vol. 6. The Royal Society of Chemistry, Cambridge, pp 30–44

  27. Albert K, Schlotterbeck G, Braumann U, Händel H, Spraul M, Krack G (1995) Angew Chem Int Ed Engl 34:1014–1016

    Article  CAS  Google Scholar 

  28. Kühnle M, Holtin K, Kreidler D, Czesla H, Schurig V, Schuler P, Schaal W, Albert K (2008) Anal Chem 80:5481–5486

    Article  Google Scholar 

  29. Albert K, Braumann U, Tseng LH, Nicholson G, Bayer E, Spraul M, Hofmann M, Dowle C, Chippendale M (1994) Anal Chem 66:3042–3046

    Article  CAS  Google Scholar 

  30. Albert K (1995) Angew Chem Int Ed Engl 34:641–642

    Article  CAS  Google Scholar 

  31. Waridel P, Wolfender JL, Lachavanne JB, Hostettmann K (2004) Phytochemistry 65:945

    Article  CAS  Google Scholar 

  32. Bringmann G, Messer K, Wohlarth M, Kraus J, Dumbuya K, Rueckert M (1999) Anal Chem 71:2678

    Article  CAS  Google Scholar 

  33. Bringmann G, Wohlfarth M, Rischer H, Schlauer J, Brun J (2002) Phytochemistry 61:195–204

    Article  CAS  Google Scholar 

  34. Schneider B, Paetz C, Hölscher D, Opitz Stefan (2005) Magn Reson Chem 43:724–728

    Article  CAS  Google Scholar 

  35. Schneider B, Gershenzon J, Graser G, Hölscher D, Schmitt B (2003) Phytochem Rev 2:31–43

    Article  CAS  Google Scholar 

  36. Sprogøe K, Stærk D, Ziegler HL, Jensen TH, Holm-Møller SB, Jaroszewski JW (2008) J Nat Prod 71:516–519

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Institute of Botany at the University of Tübingen for supplying them with plant material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Albert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gökay, O., Kühner, D., Los, M. et al. An efficient approach for the isolation, identification and evaluation of antimicrobial plant components on an analytical scale, demonstrated by the example of Radix imperatoriae . Anal Bioanal Chem 398, 2039–2047 (2010). https://doi.org/10.1007/s00216-010-4153-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4153-2

Keywords

Navigation