Skip to main content

Advertisement

Log in

Stepchild phosphohistidine: acid-labile phosphorylation becomes accessible by functional proteomics

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bioanalytical techniques were preferentially developed for the investigation of phosphohydroxyamino acids in the past and there is a wealth of information on the detection of serine, threonine and tyrosine phosphorylation in functional proteomics. However, similarly important for protein regulation and signalling is the phosphorylation of other amino acids such as histidine, but its detection is hampered by the sensitivity to acid. Mass spectrometry in conjunction with chromatographic methods is allowing us to start to get a handle on phoshohistidine. 32P-labelling and amino acid analysis for phosphorylation site determination is increasingly complemented by typical proteomic approaches based on reversed-phase peptide separation and gas-phase fragmentation. Chemical phosphorylation of peptides is a valuable tool, therefore, for the generation of analytical standards for use in method development.

RP-UPLC/Q-TOF MS/MS analysis of histidine-phosphorylated angiotensin II

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CID:

collision-induced dissociation

HPLC:

high-performance liquid chromatography

LC:

liquid chromatography

MS:

mass spectrometry

MS/MS:

tandem mass spectroemtry

pHis:

phosphohistidine

References

  1. Paradela A, Albar JP (2008) J Proteome Res 7:1809–1818

    Article  CAS  Google Scholar 

  2. Boersema PF, Mohammed S, Heck AJR (2009) J Mass Spectrom 44:861–878

    Article  CAS  Google Scholar 

  3. Zeller M, König S (2004) Anal Bioanal Chem 378:898–909

    Article  CAS  Google Scholar 

  4. DeGnore JP, Qin J (1998) J Am Soc Mass Spectrom 9:1175–1188

    Article  CAS  Google Scholar 

  5. Klumpp S, Krieglstein J (2009) Sci Signal 2:pe13

    Article  Google Scholar 

  6. Dipolo R, Beaugé L (2006) Physiol Rev 86:155–203

    Article  CAS  Google Scholar 

  7. Fraser JS, Merlie JP, Echols N, Weisfield SR, Mignot T, Wemmer DE, Zusman DR, Alber T (2007) Mol Microbiol 65:319–332

    Article  CAS  Google Scholar 

  8. Keyhan NO, Bacia K, Roseman S (2000) J Biol Chem 275:33102–33109

    Article  Google Scholar 

  9. Collet JF, Stroobant V, Pirard M, Delpierre G, Van Schaftingen E (1998) J Biol Chem 273:14107–14112

    Article  CAS  Google Scholar 

  10. Yokoi F, Hiraishi H, Izuhara K (2003) J Biochem 133:607–614

    Article  CAS  Google Scholar 

  11. Besant PG, Attwood PV (2009) Mol Cell Biochem 329:93–106

    Article  CAS  Google Scholar 

  12. Klumpp S, Krieglstein J (2002) Eur J Biochem 269:1067–1071

    Article  CAS  Google Scholar 

  13. Napper S, Kindrachuk J, Olson DJH, Ambrose SJ, Dereniwsky C, Ross ARS (2003) Anal Chem 751741–1747

  14. Medzihradszky KF, Phillipps NJ, Senderowicz L, Wang P, Turck CW (1997) Protein Sci 6:1405–1411

    Article  CAS  Google Scholar 

  15. Kleinnijenhuis AJ, Kjeldsen F, Kallipolitis B, Haselmann KF, Jensen OL (2007) Anal Chem 79:7450–7456

    Article  CAS  Google Scholar 

  16. Chi A, Huttenhower C, Geer LY, Coon JJ, Syka JEP, Bai DL, Shabanowitz J, Burke DJ, Troyanskaya OG, Hunt DF (2007) Proc Natl Acad Sci USA 104:2193–2198

    Article  CAS  Google Scholar 

  17. Zu X-L, Besant PG, Imhof A, Attwood PV (2007) Amino Acids 32:347–357

    Article  CAS  Google Scholar 

  18. Wind M, Wegener A, Kellner R, Lehmann WD (2005) Anal Chem 77:1957–1962

    Article  CAS  Google Scholar 

  19. Hohenester U-M, Ludwig K, Krieglstein J, König S (2010) Biomacromol Mass Spectrom (in press)

  20. Ek P, Pettersson G, Ek B, Gong F, Li JP, Zetterqvist Ö (2002) Eur J Biochem 269:5016–5023

    Article  CAS  Google Scholar 

  21. Ludwig K (2008) Thesis, University of Münster

  22. Lehman WD (2010) Protein phosphorylation analysis by mass spectrometry: a guide to concepts and practice. Royal Society of Chemistry, Cambridge

    Google Scholar 

  23. Hultquist DE, Moyer RW, Boyer PD (1966) Biochemistry 5(1):322–331

    Article  CAS  Google Scholar 

  24. Cameron TS, Chan C, Chute WJ (1980) Acta Crystallogr B 36:2391–2393

    Article  Google Scholar 

  25. Wei YF, Matthews HR (1991) Methods Enzymol 200:388–414

    Article  CAS  Google Scholar 

  26. Besant PG, Byrne L, Thomas G, Attwood PV (1998) Anal Biochem 258:372–375

    Article  CAS  Google Scholar 

  27. Attwood PV, Ludwig K, Bergander K, Besant PG, Adina-Zada A, Krieglstein J, Klumpp S (2010) Biochem Biophys Acta 1804(1):199–205

    CAS  Google Scholar 

Download references

Acknowledgement

S.K. is highly indebted to Prof. Susanne Klumpp (died 17 June 2009), who guided her into the field of histidine phosphorylation in a joint project investigating the interaction of ATP with growth factors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone König.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohenester, U.M., Ludwig, K., Krieglstein, J. et al. Stepchild phosphohistidine: acid-labile phosphorylation becomes accessible by functional proteomics. Anal Bioanal Chem 397, 3209–3212 (2010). https://doi.org/10.1007/s00216-009-3372-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3372-x

Keywords

Navigation