Skip to main content
Log in

Imaging the cell wall of living single yeast cells using surface-enhanced Raman spectroscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The surface of a living yeast cell (Saccharomyces cerevisiae strain W303-1A) has been labeled with silver (Ag) nanoparticles that can form nanoaggregates which have been shown to have surface-enhanced Raman scattering (SERS) activity. The cell wall of a single living yeast cell has been imaged by use of a Raman microspectroscope. The SERS spectra measured from different Ag nanoaggregates were found to be different. This can be explained on the basis of detailed spectral interpretation. The SERS spectral response originates from mannoproteins which cover the outermost regions of the yeast cell wall. Analysis of SERS spectra from the cell wall and the extracted mannoproteins from the yeast has been performed for the clarification of variation in SERS spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kneipp J, Kneipp H, Rajadurai A, Redmonda RW, Kneipp K (2009) J Raman Spectrosc 40:1–5

    Article  CAS  Google Scholar 

  2. Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) Nano Lett 6:2225–2231

    Article  CAS  Google Scholar 

  3. Hu Q, Tay L, Noestheden M, Pezacki JP (2006) J Am Chem Soc 129:14–15

    Article  Google Scholar 

  4. Morjani H, Riou JF, Nabiev I, Lavelle F, Manfait M (1993) Cancer Res 53:4784–4790

    CAS  Google Scholar 

  5. Podstawka E, Ozaki Y, Proniewicz M (2004) Appl Spectrosc 58:570–590

    Article  CAS  Google Scholar 

  6. Vo-Dinh T, Yan F, Wabuyele MB (2005) J Raman Spectrosc 36:640–647

    Article  CAS  Google Scholar 

  7. Moskovits M (1985) Rev Mod Phys 57:783–826

    Article  CAS  Google Scholar 

  8. Campion A, Kambhampati P (1998) Chem Soc Rev 27:241–250

    Article  CAS  Google Scholar 

  9. Kneipp K (1990) Exp Tech Phys 38:3–28

    CAS  Google Scholar 

  10. Yoshida K, Itoh T, Biju V, Ishikawa M, Ozaki Y (2009) Phys Rev B 79:085419–085425

    Article  Google Scholar 

  11. Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier KT, Motz JT, Dasari RA, Feld MS (2002) Appl Spectrosc 56:150–154

    Article  CAS  Google Scholar 

  12. Otto A, Mrozek I, Grabhorn H, Akemann W (1992) JPCM 4:1143–1212

    Article  CAS  Google Scholar 

  13. Xie C, Dinno MA, Li Y-q (2002) Opt Lett 27:249–251

    Article  Google Scholar 

  14. Cao YC, Jin R, Mirkin CA (2002) Science 297:1536–1540

    Article  CAS  Google Scholar 

  15. Osumi M (1998) Micron 29:207–233

    Article  CAS  Google Scholar 

  16. Kapteyn JC, Ende HVD, Klis FM (1999) Biochim Biophys Acta 1426:373–383

    CAS  Google Scholar 

  17. Chaffin WL, Pez-Ribot JL, Casanova M, Gozalbo D, Martínez JP (1998) Microbiol Mol Biol Rev 62:130–180

    CAS  Google Scholar 

  18. Klis FM, Boorsma A, De Groot PWA (2006) Yeast 23:185–202

    Article  CAS  Google Scholar 

  19. Sumita T, Yoko-o T, Shimma Y, Jigami Y (2005) Eukaryot Cell 4:1872–1881

    Article  CAS  Google Scholar 

  20. Sujith A, Itoh T, Abe H, Anas A, Yoshida K, Biju V, Ishikawa M (2008) Appl Phys Lett 92:103901–103903

    Article  Google Scholar 

  21. Thomas BJ, Rosthstein R (1989) Cell 56:619–630

    Article  CAS  Google Scholar 

  22. Lee PC, Meisel D (1982) J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  23. Dupin IVS, Stockdale VJ, Williams PJ, Jones GP, Markides AJ, Waters EP (2000) J Agric Food Chem 48:1086–1095

    Article  CAS  Google Scholar 

  24. Bosnick KA, Jiang J, Brus LE (2002) J Phys Chem B 106:8096–8099

    Article  CAS  Google Scholar 

  25. Maruyama Y, Ishikawa M, Futamata M (2001) Chem Lett 30:834–835

    Article  Google Scholar 

  26. Sladkova M, Vlckova B, Mojzes P, Slouf M, Naudind C, Le Bourdond G (2006) Faraday Discuss 132:121

    Article  CAS  Google Scholar 

  27. Futamata M, Maruyama Y, Ishikawa M (2003) J Phys Chem B 107:7607–7617

    Article  CAS  Google Scholar 

  28. Kudelski A, Pettinger B (2004) Chem Phys Lett 383:76–79

    Article  CAS  Google Scholar 

  29. Lipke PN, Ovalle R (1998) J Bacteriol 180:3735–3740

    CAS  Google Scholar 

  30. Jarvis RM, Law N, Shadi IT, O’Brien P, Lloyd JR, Goodacre R (2008) Anal Chem 80:6741–6746

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamitake Itoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sujith, A., Itoh, T., Abe, H. et al. Imaging the cell wall of living single yeast cells using surface-enhanced Raman spectroscopy. Anal Bioanal Chem 394, 1803–1809 (2009). https://doi.org/10.1007/s00216-009-2883-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2883-9

Keywords

Navigation