Skip to main content
Log in

Use of NIRS technology with a remote reflectance fibre-optic probe for predicting mineral composition (Ca, K, P, Fe, Mn, Na, Zn), protein and moisture in alfalfa

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the present work we study the use of near-infrared spectroscopy (NIRS) technology together with a remote reflectance fibre-optic probe for the analysis of major (Ca, K, P) and minor (Fe, Mn, Na, Zn) elements, protein and moisture in alfalfa. The method allows immediate analysis of the alfalfa without prior sample treatment or destruction through direct application of the fibre-optic probe on ground samples in the case of the mineral composition and on-ground and compacted (baled) samples in the case of protein and humidity. The regression method employed was modified partial least-squares (MPLS). The calibration results obtained using samples of alfalfa allowed the determination of Ca, K, P, Fe, Mn, Na and Zn, with a standard error of prediction (SEP(C)) and a correlation coefficient (RSQ) expressed in mg/kg of alfalfa of 1.37 × 103 and 0.878 for Ca, 1.10 × 103 and 0.899 for K, 227 and 0.909 for P, 103 and 0.948 for Fe, 5.1 and 0.843 for Mn, 86.2 and 0.979 for Na, and of 1.9 and 0.853 for Zn, respectively. The SEP(C) and RSQ values (in %) for protein and moisture in ground samples were 0.548 and 0.871 and 0.150 and 0.981, respectively; while in the compacted samples they were 0.564 and 0.826 and 0.262 and 0.935, respectively. The prediction capacity of the model and the robustness of the method were checked in the external validation in alfalfa samples of unknown composition, and the results confirmed the suitability of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kume S, Toharmat T, Nonaka K, Oshita T, Nakui T, Ternouth JH (2001) Anim Feed Sci Tech 93:157

    Article  CAS  Google Scholar 

  2. Murray I, Cowe I (eds) (1996) Recent advances in animal nutrition. University of Nottingham Press, UK

    Google Scholar 

  3. Coelho M, Hembry FG, Barton FE, Saxton AM (1988) Anim Feed Sci Tech 20:219

    Article  CAS  Google Scholar 

  4. Norris KH, Norris RF, Barnes RJ, Moore JE, Shenk JS (1976) J Anim Sci 43:889

    CAS  Google Scholar 

  5. Shenk JS, Westerhaus MO (1995) Forage quality evaluation and utilitation. ASA, CSSA, SSSA, Madison, WI

  6. Barton FE, Windham WR (1988) J Assoc Off Anal Chem 71:1162

    CAS  Google Scholar 

  7. Gordon FJ, Cooper KM, Park RS, Steen RW (1998) Anim Feed Sci Tech 70:339

    Article  Google Scholar 

  8. Deaville ER, Givens DI (1998) Anim Feed Sci Tech 72:41

    Article  Google Scholar 

  9. Alomar D, Fuchslocher R, Stockebrands J (1999) Anim Feed Sci Tech 80:309

    Article  CAS  Google Scholar 

  10. Valdes C, Andres S, Giráldez FJ, Garcia R, Calleja A (2006) J Sci of Food and Agric 86:308

    Article  CAS  Google Scholar 

  11. Shenk JS, Landa I, Hoover MR, Westerhaus MO (1981) Crop Sci 21:355

    Article  CAS  Google Scholar 

  12. Shenk JS, Westerhaus MO, Hoover MR (1979) Dairy Sci 62:807

    Article  CAS  Google Scholar 

  13. Clark DH, Cary EE, Mayland HF (1987) Agron J 79:485

    Article  CAS  Google Scholar 

  14. Vázquez de Aldana BR, García Criado B, García Ciudad A, Pérez Corona ME (1996) Commun Soil Sci Plant Anal 26:1383

    Article  Google Scholar 

  15. Ruano-Ramos A, García Ciudad A, García Criado B (1999) Anim Feed Sci Tech 77:331

    Article  CAS  Google Scholar 

  16. Cozzolino D, Moron A (2004) Anim Feed Sci Tech 111:61

    Article  CAS  Google Scholar 

  17. Petisto C, García-Criado B, Vázquez de Aldana BR (2005) Anal Bioanal Chem 382:458

    Article  CAS  Google Scholar 

  18. Udelhoven T, Emmerling C, Jarmer T (2003) Plant and Soil 251:319

    Article  CAS  Google Scholar 

  19. Atanassova S, Pavlov D, Todorova E, Todorova M (2004) Near infrared spectroscopy. Proceedings of the 11th Intenational Conference. NIR publications

  20. Wu Y, Chen J, Wu X, Tian O, Ji J, Qin Z (2005) Appl Geochem 20:1051

    Article  CAS  Google Scholar 

  21. Halgerson JL, Sheaffer CC, Martin NP, Peterson PR, Weston SJ (2004) Agron J 96:344

    Article  CAS  Google Scholar 

  22. Shenk JS, Workman JJ, Westerhaus M (2001) In: Burns DA, Ciurczak E (eds) Handbook of near infrared analysis. Marcel Dekker, New York

    Google Scholar 

  23. Azzouz T, Puigdoménech A, Aragay M, Tauler R (2003) Anal Chim Acta 484:121

    Article  CAS  Google Scholar 

  24. González Martín I, González Pérez C, Hernández Méndez J, Álvarez García N, Hernández Andaluz JL (2001) Anal Chim Acta 453:281

    Article  Google Scholar 

  25. González Martín I, González Pérez C, Hernández Méndez J, Álvarez García N (2002) Anal Chim Acta 468:2931

    Google Scholar 

  26. González Martín I, González Pérez C, Hernández Méndez J, Álvarez García N (2003) Meat Sci 65:713

    Article  CAS  Google Scholar 

  27. González Martín I, González Pérez C, Hernández Méndez J, Álvarez García N, García Villaescusa V (2006) Talanta 69:711

    Article  CAS  Google Scholar 

  28. Martens H, Naes T (eds) (2001) Multivariate calibration. Wiley, Chichester

    Google Scholar 

  29. Shenk JS, Westerhaus MO (1995) Analysis of agriculture and food products by near infrared reflectance spectroscopy. Monograph, NIRSystems

  30. Davies AMC, Williams P (eds) (1996) Near infrared spectroscopy: the future waves. The Proceedings of the Seventh International Conference on Near Infrared Spectroscopy. NIR Publications, Chichester, UK

  31. Barnes RJ, Dhanoa MS, Lister SJ (1989) Appl Spectrosc 43:772

    Article  CAS  Google Scholar 

  32. Shenk JS, Westerhaus MO (1995) Routine operation calibration development and network system management manual. NIRSystems Inc, Silver Spring MD 20904 USA

  33. Geladi P, Mac Dougall D, Martens H (1985) Appl Spectrosc 39(3):491

    Article  Google Scholar 

  34. Dhanoa MS, Lister SJ, Barnes RJ (1995) Appl Spectrosc 49(6):765

    Article  CAS  Google Scholar 

  35. Murray I (1986) The NIR spectra of homologous series of organic compounds. In: Hollo J, Kaffka KF, Gonczy JL (eds) Proceedings of the NIR/NIT International Conference. Akademiai Kiado, Budapest, Hungary

  36. Garnsworthy PC, Wiseman J, Fegeros K (2000) J Agric Sci (Camb) 135:409

    Article  Google Scholar 

  37. Williams PC, Sobering DC (1993) Near Infrared Spectr 1:25

    CAS  Google Scholar 

  38. Williams PC, Norris K (eds) (2001) Near-infrared technology in the agricultural and food industries. American Association of Cereal Chemists, St Paul, Minnesota

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Junta de Castilla y León, project SA 057A05 for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. González-Martín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Martín, I., Hernández-Hierro, J.M. & González-Cabrera, J.M. Use of NIRS technology with a remote reflectance fibre-optic probe for predicting mineral composition (Ca, K, P, Fe, Mn, Na, Zn), protein and moisture in alfalfa. Anal Bioanal Chem 387, 2199–2205 (2007). https://doi.org/10.1007/s00216-006-1039-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-1039-4

Keywords

Navigation