Skip to main content
Log in

Hirshfeld-based atomic population analysis of the B, N doping effect in zigzag graphene nanoribbons: \(\pi\) electron density as requirement to follow the B, N doping guidelines

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work, we present an atomic population study within the Fractional Occupation Hirshfeld-I (FOHI) scheme applied to several pristine, boron-, nitrogen- and B, N-doped non-periodic zigzag graphene nanoribbons (always using a double carbon replacement). To accomplish this task, we have considered the singlet–triplet energy gap as a criterion to check the most reliable electron density. B2PLYPD double-hybrid functional provides the most accurate relative energies in comparison with the other methods, but similar atomic populations are obtained in most cases. Moreover, in spite of the observed different behavior concerning the population of B, N dopants and their corresponding p- and n-type doping effects, the FOHI atomic populations are in excellent agreement with the widely accepted electronegative scale. Nevertheless, we propose to employ a more appropriate electron partitioning strategy taking into account the contribution of \(\pi\)-symmetric orbitals. It provides the expected population results according to doping guidelines. In any case, both kinds of populations describe in a similar way the mesomeric effects and the edge variations after replacing two carbons by either two boron or nitrogen atoms. On the contrary, the populations point out a different behavior when the systems are doped with one boron and one nitrogen simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The energies of the considered structures are shown in Table S1 in the electronic supporting information (ESI).

  2. See figures below to understand the numbering.

  3. Unfortunately, the calculation of analytic gradients is not available in Gaussian 09 for ROMP2 and ROB2PLYPD approaches.

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  2. Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ, Elías AL, Muñoz Sandoval E, Cano-Márquez AG, Charlier JC, Terrones H (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5(4):351–372

    Article  Google Scholar 

  3. Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem 21(10):3335–3345

    Article  CAS  Google Scholar 

  4. Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40(5):2644–2672

    Article  CAS  Google Scholar 

  5. Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Mllen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466(7305):470–473

    Article  CAS  Google Scholar 

  6. Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867):1229–1232

    Article  CAS  Google Scholar 

  7. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, Heer WAD (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196

    Article  CAS  Google Scholar 

  8. Hod O, Barone V, Scuseria GE (2008) Half-metallic graphene nanodots: a comprehensive first-principles theoretical study. Phys Rev B 77(3):035411

    Article  Google Scholar 

  9. Deleuze MS, Huzak M, Hajgató B (2013) Half-metallicity of graphene nanoribbons and related systems: a new quantum mechanical El Dorado for nanotechnologies or a hype for materials scientists? J Mol Modeling 19(7):2699–2714

    Article  CAS  Google Scholar 

  10. Huzak M, Deleuze MS, Hajgató B (2011) Half-metallicity and spin-contamination of the electronic ground state of graphene nanoribbons and related systems: an impossible compromise? J Chem Phys 135(10):104704

    Article  CAS  Google Scholar 

  11. Schwabe T, Grimme S (2007) Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys Chem Chem Phys 9(26):3397–3406

    Article  CAS  Google Scholar 

  12. Plasser F, Pašalić H, Gerzabek MH, Libisch F, Reiter R, Burgdōrfer J, Mūller T, Shepard R, Lischka H (2013) The multiradical character of one- and two-dimensional graphene nanoribbons. Angew Chem Int Ed 52(9):2581–2584

    Article  CAS  Google Scholar 

  13. Torres AE, Guadarrama P, Fomine S (2014) Multiconfigurational character of the ground states of polycyclic aromatic hydrocarbons. A systematic study. J Mol Model 20(5):1–9

    Article  Google Scholar 

  14. Muhich CL, Westcott JY, Morris TC, Weimer AW, Musgrave CB (2013) The effect of N and B doping on graphene and the adsorption and migration behavior of Pt atoms. J Phys Chem C 117(20):10523–10535

    Article  CAS  Google Scholar 

  15. Rani P, Jindal VK (2012) Designing band gap of graphene by B and N dopant atoms. RSC Adv 3(3):802–812

    Article  Google Scholar 

  16. Groves M, Chan A, Malardier-Jugroot C, Jugroot M (2009) Improving platinum catalyst binding energy to graphene through nitrogen doping. Chem Phys Lett 481(46):214–219

    Article  CAS  Google Scholar 

  17. Wu M, Cao C, Jiang JZ (2010) Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study. Nanotechnology 21(50):505202

    Article  CAS  Google Scholar 

  18. Miao L, Jia R, Wang Y, Kong CP, Wang J, Eglitis RI, Zhang HX (2017) Certain doping concentrations caused half-metallic graphene. J Saudi Chem Soc 21(1):111–117

    Article  CAS  Google Scholar 

  19. Pekz R, Erkoç Ş (2009) A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons. Phys E 42(2):110–115

    Article  Google Scholar 

  20. Huang SF, Terakura K, Ozaki T, Ikeda T, Boero M, Oshima M, Ozaki T, Miyata S (2009) First-principles calculation of the electronic properties of graphene clusters doped with nitrogen and boron: analysis of catalytic activity for the oxygen reduction reaction. Phys Rev B 80(23):235410

    Article  Google Scholar 

  21. Sharma S, Verma A (2013) A theoretical study of H2S adsorption on graphene doped with B, Al and Ga. Phys B 427:12–16

    Article  CAS  Google Scholar 

  22. Zhang Hp, Luo Xg, Lin Xy, Lu X, Leng Y, Song Ht (2013) Density functional theory calculations on the adsorption of formaldehyde and other harmful gases on pure, Ti-doped, or N-doped graphene sheets. Appl Surf Sci 283:559–565

    Article  CAS  Google Scholar 

  23. Zhang Hp, Luo Xg, Lin Xy, Lu X, Leng Y (2013) Density functional theory calculations of hydrogen adsorption on Ti-, Zn-, Zr-, Al-, and N-doped and intrinsic graphene sheets. Int J Hydrogen Energy 38(33):14269–14275

    Article  CAS  Google Scholar 

  24. Al-Aqtash N, Al-Tarawneh KM, Tawalbeh T, Vasiliev I (2012) Ab initio study of the interactions between boron and nitrogen dopants in graphene. J Appl Phys 112(3):034304

    Article  Google Scholar 

  25. Geldof D, Krishtal A, Blockhuys F, Van Alsenoy C (2011) An extension of the hirshfeld method to open shell systems using fractional occupations. J Chem Theory Comput 7(5):1328–1335

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr, JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09 Revision D.01 (2013). Gaussian Inc., Wallingford CT

  27. Bacskay GB (1981) A quadratically convergent Hartree–Fock (QC-SCF) method. Application to closed shell systems. Chem Phys 61(3):385–404

    Article  CAS  Google Scholar 

  28. Bultinck P, Van Alsenoy C, Ayers PW, Carbó-Dorca R (2007) Critical analysis and extension of the hirshfeld atoms in molecules. J Chem Phys 126(14):144111–144111–9

    Article  Google Scholar 

  29. Noodleman L (1981) Valence bond description of antiferromagnetic coupling in transition metal dimers. J Chem Phys 74(10):5737–5743

    Article  CAS  Google Scholar 

  30. Noodleman L, Baerends EJ (1984) Electronic structure, magnetic properties, ESR, and optical spectra for 2-iron ferredoxin models by LCAO-X.alpha. valence bond theory. J Am Chem Soc 106(8):2316–2327

    Article  CAS  Google Scholar 

  31. Noodleman L, Peng CY, Case DA, Mouesca JM (1995) Orbital interactions, electron delocalization and spin coupling in iron-sulfur clusters. Coord Chem Rev 144:199–244

    Article  CAS  Google Scholar 

  32. Peverati R, Truhlar DG (2012) An improved and broadly accurate local approximation to the exchangecorrelation density functional: the MN12-L functional for electronic structure calculations in chemistry and physics. Phys Chem Chem Phys 14(38):13171–13174

    Article  CAS  Google Scholar 

  33. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125(19):194101

    Article  Google Scholar 

  34. Čársky P, Hubač I (1991) Restricted Hartree-Fock and unrestricted Hartree-Fock as reference states in many-body perturbation theory: a critical comparison of the two approaches. Theor Chim Acta 80(4–5):407–425

    Google Scholar 

  35. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44(2):129–138

    Article  CAS  Google Scholar 

  36. Maroulis G (1995) Evaluating the performance of correlated methods in molecular property calculations: pattern recognition and clustering in spaces of theoretical descriptions. Int J Quantum Chem 55(2):173–180

    Article  CAS  Google Scholar 

  37. Ferro-Costas D, Otero N, Graña A, Mosquera R (2012) A QTAIM-based energy partitioning for understanding the physical origin of conformational preferences: Application to the Z effect in O=C-X-R and related units. J Comput Chem 33(32):2533–2543

    Article  CAS  Google Scholar 

  38. Otero N, Estévez L, Mandado M, Mosquera R (2012) An electron-density-based study on the ionic reactivity of 1,3-Azoles. Eur J Org Chem 12:2403–2413

    Article  Google Scholar 

  39. Otero N, Mandado M, Mosquera R (2007) Nucleophilicity of indole derivatives: activating and deactivating effects based on proton affinities and electron density properties. J Phys Chem A 111(25):5557–5562

    Article  CAS  Google Scholar 

  40. Otero N, González Moa M, Mandado M, Mosquera R (2006) QTAIM study of the protonation of indole. Chem Phys Lett 428(4–6):249–254

    Article  CAS  Google Scholar 

  41. Janesko BG, Henderson TM, Scuseria GE (2009) Long-range-corrected hybrid density functionals including random phase approximation correlation: application to noncovalent interactions. J Chem Phys 131(3):034110

    Article  Google Scholar 

  42. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This investigation is a part of the PICS Project (No-6115). N.O. thanks Xunta de Galicia for a grant under the I2C program and CNRS for 2-year postdoctoral contract. This work was granted access to the HPC resources of [CCRT/CINES/IDRIS] under the allocation 2014–2016 [Nos. i2014087031 and i2015087031] made by GENCI (Grand Equipement National de Calcul Intensif). We also acknowledge the “Direction du Numérique” of the “Université de Pau et des Pays de l’Adour” for the computing facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás Otero.

Additional information

Published as part of the special collection of articles “In Memoriam of Claudio Zicovich.”

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6721 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otero, N., Karamanis, P. & Pouchan, C. Hirshfeld-based atomic population analysis of the B, N doping effect in zigzag graphene nanoribbons: \(\pi\) electron density as requirement to follow the B, N doping guidelines. Theor Chem Acc 137, 16 (2018). https://doi.org/10.1007/s00214-017-2189-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2189-5

Keywords

Navigation