Skip to main content
Log in

Calculation of solvation free energies of Li+ and O2 ions and neutral lithium–oxygen compounds in acetonitrile using mixed cluster/continuum models

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Solvation effects play a major role in determining the cycling characteristics of the non-aqueous rechargeable Li-air battery. We use a mixed cluster/continuum solvent model with varying number of explicit solvent molecules (n = 4–10) to calculate the solvation free energies (\( \Updelta G_{\text{solv}}^{*} \)) of Li+ and O2 ions and neutral LiO2, Li2O2, LiO, and Li2O species in acetonitrile solvent. Calculations for complexes with the full first solvation shell around Li+ (n = 4) and O2 (n = 8) show excellent agreement with the solvation free energies obtained using the cluster pair approximation (the error is below 2.0 kcal/mol). The use of the pure continuum model fitted to reproduce the experimental values of \( \Updelta G_{\text{solv}}^{*} \)(Li+) and \( \Updelta G_{\text{solv}}^{*} \)(O2 ) gives the solvation free energies of various lithium–oxygen species (Li x O y ; x, y = 1, 2) that are in excellent agreement with the results obtained using mixed cluster/continuum models (n ≥ 8). This provides a theoretical framework for including solvent effects in the theoretical models of oxygen reduction and evolution reactions in the aprotic Li-air battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2010) J Phys Chem C 114:9178–9186

    Article  CAS  Google Scholar 

  2. Girishkumar G, McCloskey BD, Luntz A, Swanson S, Wilcke W (2010) J Phys Chem Lett 1:2193–2203

    Article  CAS  Google Scholar 

  3. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  4. Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) J Electrochem Soc 159:R1–R30

    Article  CAS  Google Scholar 

  5. Bryantsev VS, Blanco M (2011) J Phys Chem Lett 2:379–383

    Article  CAS  Google Scholar 

  6. Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novák P, Bruce P (2011) J Am Chem Soc 133:8040–8047

    Article  CAS  Google Scholar 

  7. Mizuno F, Nakanishi S, Kotani Y, Yokoishi S, Iba H (2010) Electrochemistry 78:403–405

    Article  CAS  Google Scholar 

  8. McCloskey BD, Bethune DS, Shelby RM, Girishkumar G, Luntz AC (2011) J Phys Chem Lett 2:1161–1166

    Article  CAS  Google Scholar 

  9. McCloskey BD, Scheffler R, Speidel A, Bethune DS, Shelby RM, Luntz AC (2011) J Am Chem Soc 133:18038–18041

    Article  CAS  Google Scholar 

  10. Xiao J, Hu J, Wang D, Hu D, Xu W, Graff GL, Nie Z, Liu J, Zhang JG (2011) J Power Sources 196:5674–5678

    Article  CAS  Google Scholar 

  11. Veith GM, Dudney NJ, Howe J, Nanda J (2011) J Phys Chem C 115:14325–14333

    Article  CAS  Google Scholar 

  12. Wang H, Xie K (2012) Electrochim Acta 64:29–34

    Article  CAS  Google Scholar 

  13. Freunberger SA, Chen Y, Drewett NE, Hardwick LJ, Bardé F, Bruce PG (2011) Angew Chem Int Ed 50:8609–8613

    Article  CAS  Google Scholar 

  14. Chen Y, Freunberger SA, Peng Z, Bardé F, Bruce PG (2012) J Am Chem Soc 134:7952–7957

    Article  CAS  Google Scholar 

  15. Bryantsev VS, Giordani V, Walker W, Blanco M, Zecevic S, Uddin J, Addison D, Chase GV (2011) J Phys Chem A 115:12399–12409

    Article  CAS  Google Scholar 

  16. Mizuno F, Nakanishi S, Shirasawa A, Takechi K, Shiga T, Nishikoori H, Iba H (2011) Electrochemistry 79:876–881

    Article  CAS  Google Scholar 

  17. Zhang Z, Lu J, Assary RS, Du P, Wang HH, Sun YK, Qin Y, Lau KC, Greeley J, Redfern PC (2011) J Phys Chem C 115:25535–25542

    Article  CAS  Google Scholar 

  18. Crowther O, Meyer B, Solomon M (2011) Electrochem Solid St Lett 14:A113–A115

    Article  CAS  Google Scholar 

  19. Hummelshøj JS, Blomqvist J, Datta S, Vegge T, Rossmeisl J, Thygesen KS, Luntz AC, Jacobsen KW, Nørskov JK (2010) J Chem Phys 132:071101-1–071101-4

    Article  Google Scholar 

  20. Viswanathan V, Thygesen KS, Hummelshøj JS, Nørskov JK, Girishkumar G, McCloskey BD, Luntz AC (2011) J Chem Phys 135:214704-1–214704-10

    Article  Google Scholar 

  21. Xu Y, Shelton WA (2011) J Electrochem Soc 158:A1177–A1184

    Article  CAS  Google Scholar 

  22. Mo Y, Ong SP, Ceder G (2011) Phys Rev B 84:205446-1–205446-9

    Article  Google Scholar 

  23. Radin MD, Rodriguez JF, Tian F, Siegel DJ (2012) J Am Chem Soc 134:1093–1103

    Article  CAS  Google Scholar 

  24. Wasileski SA, Janik MJ (2008) Phys Chem Chem Phys 10:3613–3627

    Article  CAS  Google Scholar 

  25. Janik MJ, Taylor CD, Neurock M (2009) J Electrochem Soc 156:B126–B135

    Article  CAS  Google Scholar 

  26. Rossmeisl J, Skúlason E, Björketun ME, Tripkovic V, Nørskov JK (2008) Chem Phys Lett 466:68–71

    Article  CAS  Google Scholar 

  27. Warren GL, Patel SJ (2007) Chem Phys 127:064509-1–064509-19

    Google Scholar 

  28. Bryantsev VS, Diallo MS, Goddard WA III (2008) J Phys Chem B 112:9709–9719

    Article  CAS  Google Scholar 

  29. Pliego JR Jr (2011) Theor Chem Acc 128:275–283

    Article  CAS  Google Scholar 

  30. Merchant S, Dixit PD, Dean KR, Asthagiri DJ (2011) Chem Phys 135:054505-1–054505-8

    Google Scholar 

  31. Ziegler MJ, Madura JD (2011) J Solution Chem 40:1383–1398

    Article  CAS  Google Scholar 

  32. Peng Z, Freunberger SA, Hardwick LJ, Chen Y, Giordani V, Bardé F, Novák P, Graham D, Tarascon JM, Bruce PG (2011) Angew Chem Int Ed 50:6351–6355

    Article  CAS  Google Scholar 

  33. Kelly CP, Cramer CJ, Truhlar DG (2007) J Phys Chem B 111:408–422

    Article  CAS  Google Scholar 

  34. Jaguar, version 7.7 (2010) Schrödinger, LLC, New York

  35. Bylaska EJ, de Jong WA, Govind N, Kowalski K, Straatsma TP, Valiev M, Wang D, Apra E, Windus TL, Hammond J, Nichols P, Hirata S, Hackler MT, Zhao Y, Fan PD, Harrison RJ, Dupuis M, Smith DMA, Nieplocha J, Tipparaju V, Krishnan M, Wu Q, Van Voorhis T, Auer AA, Nooijen M, Brown E, Cisneros G, Fann GI, Fruchtl H, Garza J, Hirao K, Kendall R, Nichols JA, Tsemekhman K, Wolinski K, Anchell J, Bernholdt D, Borowski P, Clark T, Clerc D, Dachsel H, Deegan M, Dyall K, Elwood D, Glendening E, Gutowski M, Hess A, Jaffe J, Johnson B, Ju J, Kobayashi R, Kutteh R, Lin Z, Littlefield R, Long X, Meng B, Nakajima T, Niu S, Pollack L, Rosing M, Sandrone G, Stave M, Taylor H, Thomas G, van Lenthe J, Wong A, Zhang Z (2008) NWChem, a computational chemistry package for parallel computers, version 5.1.1. Pacific Northwest National Laboratory, Richland

  36. Kendall RA, Aprà E, Bernholdt DE, Bylaska EJ, Dupuis M, Fann GI, Harrison RJ, Ju J, Nichols JA, Nieplocha J, Straatsma T, Windus TL, Wong AT (2000) Comput Phys Commun 128:260–283

    Article  CAS  Google Scholar 

  37. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  38. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  39. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101-1–194101-17

    Google Scholar 

  40. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  41. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  42. Kendall RA, Dunning TH Jr (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  43. Marenich AV, Olson RM, Kelly CP, Cramer CJ, Truhlar DG (2007) J Chem Theory Comput 3:2011–2033

    Article  CAS  Google Scholar 

  44. Cramer CJ, Truhlar DJ (2008) Acc Chem Res 41:760–768

    Article  CAS  Google Scholar 

  45. Zuo CS, Wiest O, Wu YD (2009) J Phys Chem A 113:12028–12034

    Article  CAS  Google Scholar 

  46. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  47. Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  Google Scholar 

  48. Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1994) J Am Chem Soc 116:11875–11882

    Article  Google Scholar 

  49. Kalidas C, Hefter G, Marcus Y (2000) Chem Rev 100:819–852

    Article  CAS  Google Scholar 

  50. Marcus Y (2007) Chem Rev 107:3880–3897

    Article  CAS  Google Scholar 

  51. Vasudevan D, Wendt HJ (1995) Electroanalyt Chem 192:69–74

    Article  Google Scholar 

  52. Pavlishchuk VV, Addison AW (2000) Inorg Chim Acta 298:97–102

    Article  CAS  Google Scholar 

  53. Song C, Zhang J (2008) In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Springer, London

    Google Scholar 

  54. NIST Chemistry Webbook (2005) http://webbook.nist.gov/chemistry/

  55. Blanco MJ (1991) Comput Chem 12:237–247

    Article  CAS  Google Scholar 

  56. Fan CF, Olafson BD, Blanco M, Hsu SL (1992) Macromolecules 25:3667–3676

    Article  CAS  Google Scholar 

  57. Hünenberger P, Reif M (2011) Single-ion solvation: experimental and theoretical approaches to elusive thermodynamic quantities. RSC, Cambridge

    Google Scholar 

  58. Marcus Y (1985) Ion solvation. Wiley, New York

    Google Scholar 

  59. Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV (1998) J Phys Chem A 102:7787–7794

    Article  CAS  Google Scholar 

  60. Zhan CG, Dixon DA (2001) J Phys Chem A 105:11534–11540

    Article  CAS  Google Scholar 

  61. Asthagiri D, Pratt LR, Ashbaugh HS (2003) J Chem Phys 119:2702–2708

    Article  CAS  Google Scholar 

  62. Grossfield A, Ren P, Ponder JW (2003) J Am Chem Soc 125:15671–15682

    Article  CAS  Google Scholar 

  63. Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem B 110:16066–16081

    Article  CAS  Google Scholar 

  64. Donald WA, Leib RD, Demireva M, O’Brien JT, Prell JS, Williams ER (2009) J Am Chem Soc 131:13328–13337

    Article  CAS  Google Scholar 

  65. Camaioni DM, Schwerdtfeger CA (2005) J Phys Chem A 109:10795–10797

    Article  CAS  Google Scholar 

  66. Yamdagni R, Payzant JD, Kebarle P (1973) Can J Chem 51:2507–2511

    Article  CAS  Google Scholar 

  67. Davidson WR, Kebarle P (1976) J Am Chem Soc 98:6125–6133

    Article  CAS  Google Scholar 

  68. Valina AB (2001) J Phys Chem A 105:11057–11068

    Article  CAS  Google Scholar 

  69. Guo BC, Conklin BJ, Castleman AW Jr (1989) J Am Chem Soc 111:6506–6510

    Article  CAS  Google Scholar 

  70. More MB, Glendening ED, Ray D, Feller D, Armentrout PB (1996) J Phys Chem 100:1605–1614

    Article  CAS  Google Scholar 

  71. Benitez D, Tkachouk E, Goddard WA III (2008) Chem Commun 6194–6196

  72. Benitez D, Tkachouk E, Goddard WA III (2009) Organometallics 28:2643–2645

    Article  CAS  Google Scholar 

  73. Bryantsev VS, Diallo MS, van Duin ACT, Goddard WA III (2009) J Chem Theory Comput 5:1016–1026

    Article  CAS  Google Scholar 

  74. Zhao Y, Truhlar DG (2007) Org Lett 9:1967–1970

    Article  CAS  Google Scholar 

  75. Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Ringnalda M, Goddard WA III, Honig B (1994) J Am Chem Soc 116:11875–11882

    Article  CAS  Google Scholar 

  76. Nakamura T (1975) Bull Chem Soc Jpn 48:1447–1451

    Article  CAS  Google Scholar 

  77. Bryantsev VS, Diallo MS, Goddard WA III (2009) J Phys Chem A 113:9559–9567

    Article  CAS  Google Scholar 

  78. Pasgreta E, Puchta R, Zahl A, van Eldik R (2007) Eur J Inorg Chem 1815–1822

  79. Nigam S, Majumder C (2008) J Chem Phys 128:214307-1–214307-8

    Article  Google Scholar 

  80. Marx D, Chandra A, Tuckerman ME (2010) Chem Rev 110:2174–2216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am indebted to Dr. Mario Blanco for providing me with the algorithm for sampling the initial configurations of solvated clusters. This work was supported by Liox Power, Inc., Pasadena, CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav S. Bryantsev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryantsev, V.S. Calculation of solvation free energies of Li+ and O2 ions and neutral lithium–oxygen compounds in acetonitrile using mixed cluster/continuum models. Theor Chem Acc 131, 1250 (2012). https://doi.org/10.1007/s00214-012-1250-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1250-7

Keywords

Navigation