Skip to main content
Log in

On the possible catalytic role of a single water molecule in the acetone + OH gas phase reaction: a theoretical pseudo-second-order kinetics study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work, we have revisited the mechanism of the acetone + OH radical reaction assisted by a single water molecule simulating atmospheric conditions. Density functional methods are employed in conjunction with CCSD(T) and large basis sets to explore the potential energy surface of this radical-molecule reaction. Computational kinetics calculations in a pseudo-second order mechanism have been performed, taking into account average atmospheric water concentrations and temperatures. We have used this method recently to study the single-water molecule-assisted H-abstraction in acetaldehyde (Iuga et al. in J Phys Chem Lett 1:3112, 2010) and in glyoxal (Iuga et al. in Chem Phys Lett 501:11, 2010) by OH radicals, and we showed that the initial water complexation step is essential in the rate constant calculation. In both cases, the amount of complex formed is only about 0.01% of the total organic molecule concentration, and as a consequence, water does not accelerate the reaction. In the acetone reaction with OH radicals under atmospheric conditions, we also find that the water–acetone complex concentration is much too small to be relevant, and thus, the rate constant of the water-assisted mechanism is orders of magnitude smaller than the water-free corresponding value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iuga C, Alvarez-Idaboy JR, Reyes L, Vivier-Bunge A (2010) J Phys Chem Lett 1:3112

    Article  CAS  Google Scholar 

  2. Iuga C, Alvarez-Idaboy JR, Vivier-Bunge A (2010) Chem Phys Lett 501:11

    Article  CAS  Google Scholar 

  3. Chen HT, Chang JG, Chen HL (2008) J Phys Chem A 112:8093

    Article  CAS  Google Scholar 

  4. Buszek RJ, Francisco JS (2009) J Phys Chem A 113:5333

    Article  CAS  Google Scholar 

  5. Luo Y, Maeda S, Ohno K (2009) Chem Phys Lett 469:57

    Article  CAS  Google Scholar 

  6. Vöhringer-Martinez E, Hansmann B, Hernandez H, Francisco JS, Troe J, Abel B (2007) Science 315:497

    Article  Google Scholar 

  7. Smith I (2007) Science 315:470

    Article  CAS  Google Scholar 

  8. Suma K, Sumiyoshi Y, Endo Y (2006) Science 311:1278

    Article  CAS  Google Scholar 

  9. Aloisio S, Francisco JS (2000) Acc Chem Res 33:825

    Article  CAS  Google Scholar 

  10. Smith IW, Ravishankara AR (2002) J Phys Chem A 106:4798

    Article  CAS  Google Scholar 

  11. Hansen JC, Francisco JS (2002) Chem Phys Chem 3:833

    CAS  Google Scholar 

  12. Nelander B (1980) Chem Phys 72:77

    CAS  Google Scholar 

  13. Engdahl A, Nelander B (1983) Chem Phys Lett 100:129

    Article  CAS  Google Scholar 

  14. Peterson KI, Klemperer W (1984) J Chem Phys 81:3842

    Article  CAS  Google Scholar 

  15. Block PA, Marshall MD, Pedersen LG, Miller RE (1992) J Chem Phys 96:7321

    Article  CAS  Google Scholar 

  16. Nelander B (1992) Chem Phys 159:28l

    Article  Google Scholar 

  17. Zhang XK, Lewars EG, March RE, Pads JM (1993) J Phys Chem 97:4320

    Article  CAS  Google Scholar 

  18. Engdahl A (1993) Chem Phys 178:305

    Article  CAS  Google Scholar 

  19. Bakkas N, Bouteiller Y, Loutellier A, Perchard JP, Racine S (1993) J Chem Phys 99:3335

    Article  CAS  Google Scholar 

  20. Priem D, Ha TK, Baudera A (2000) J Chem Phys 113:169

    Article  CAS  Google Scholar 

  21. Kuma S, Slipchenko MN, Momose T, Vilesov AF (2007) Chem Phys Lett 439:265

    Article  CAS  Google Scholar 

  22. Hartt GM, Shields GC, Kirschner KN (2008) J Phys Chem A 112:4490

    Article  CAS  Google Scholar 

  23. Nedic M, Wassermann TN, Xue Z, Zielke P, Suhm MA (2008) Phys Chem Chem Phys 10:5953

    Article  CAS  Google Scholar 

  24. Singh HB, Ohara D, Herlth D, Sachse W, Blake DR, Bradshaw JD, Kanakidou M, Crutzen PJ (1994) J Geophys Res 99:1805

    Article  CAS  Google Scholar 

  25. Singh HB, Kanakidou M, Crutzen PJ, Jacob DJ (1995) Nature 378:50

    Article  CAS  Google Scholar 

  26. McKeen SA, Gierczak T, Burkholder JB, Wennberg PO, Hanisco TF, Keim ER, Gao RS, Liu SC, Ravishankara AR, Fahey DW (1997) Geophys Res Lett 24:3177

    Article  CAS  Google Scholar 

  27. Arnold F, Schneider J, Gollinger K, Schlager H, Schulte P, Hage DE, Whitefield PD, Van Velthoven P (1997) Geophys Res Lett 24:57

    Article  CAS  Google Scholar 

  28. Knop G, Arnold F (1987) Geophys Res Lett 14:1262

    Article  CAS  Google Scholar 

  29. Singh HB, Chen Y, Gregory GL, Sachse GW, Talbot R, Blake DR, Bradshaw JD, Kondo Y, Heikes B, Thornton D (1997) Geophys Res Lett 24:127

    Article  CAS  Google Scholar 

  30. Gierczak T, Burkholder JB, Bauerle S, Ravishankara AR (1998) Chem Phys Lett 213:229

    Google Scholar 

  31. Atkinson R (1989) J Phys Chem Ref Data, Monograph 1–2

  32. Atkinson R (1994) J Phys Chem Ref Data, Monograph 2–9

  33. Atkinson R, Baulch DL, Cox RA, Hampson RF Jr, Kerr JA, Rossi MJ, Troe J (1999) J Phys Chem Ref Data 28:191

    Article  CAS  Google Scholar 

  34. Atkinson R, Baulch DL, Cox RA, Hampson RF Jr, Kerr JA, Troe J (1989) J Phys Chem Ref Data 18:881

    Article  CAS  Google Scholar 

  35. DeMore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR, Kolb CE, Molina MJ (1997) Chemical Kinetics and photochemical data for Use in stratospheric modeling. Evaluation number 12. JPL publication 97–4

  36. Wollenhaupt M, Carl SA, Horowitz A, Crowley JN (2000) J Phys Chem A 104:2695

    Article  CAS  Google Scholar 

  37. Gierczak T, Ravishankara AR (2000) 16th International Symposium on Gas Kinetics, Cambridge, July 23–27, Poster PB13

  38. Alvarez-Idaboy JR, Cruz-Torres A, Galano A, Ruiz-Santoyo ME (2004) J Phys Chem A 108:2740

    Article  CAS  Google Scholar 

  39. Caralp F, Forst W, Henon E, Bergeat A, Bohr F (2006) Phys Chem Chem Phys 8:1072

    Article  CAS  Google Scholar 

  40. Canneaux S, Sokolowski-Gomez N, Bohr F, Dobe S (2004) Phys Chem Chem Phys 6:5172

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT

    Google Scholar 

  42. Alvarez-Idaboy JR, Galano A, Bravo-Pérez G, Ruiz-Santoyo ME (2001) J Am Chem Soc 123:8387

    Article  CAS  Google Scholar 

  43. Galano A, Alvarez-Idaboy JR, Ruiz-Santoyo ME, Vivier-Bunge A (2004) Chem Phys Chem 5:1379

    CAS  Google Scholar 

  44. Galano A, Alvarez-Idaboy JR, Ruiz-Santoyo ME, Vivier-Bunge A (2005) J Phys Chem A 109:169

    Article  CAS  Google Scholar 

  45. Galano A, Cruz-Torres A, Alvarez-Idaboy JR (2006) J Phys Chem A 110:1917

    Article  CAS  Google Scholar 

  46. Szori M, Fittschen C, Csizmadia IG, Viskolcz J (2006) Chem Theory Comput 2:1575

    Article  CAS  Google Scholar 

  47. Alvarez-Idaboy JR, Galano A (2010) Theo Chem Acc 126:75

    Article  CAS  Google Scholar 

  48. Wallnoefer HG, Fox T, Liedl KR, Tautermann CS (2010) Phys Chem Chem Phys 12:14941

    Article  CAS  Google Scholar 

  49. Eyring H (1935) J Chem Phys 3:107

    Article  CAS  Google Scholar 

  50. Evans MG, Polanyi M (1935) Trans Faraday Soc 31:875

    Article  CAS  Google Scholar 

  51. Truhlar DG, Hase WL, Hynes JT (1983) J Phys Chem 87:2264

    Article  Google Scholar 

  52. Duncan WT, Bell RL, Truong TN (1998) J Comput Chem 19:1039

    Article  CAS  Google Scholar 

  53. Zhang S, Truong TN (2001) VKLab version 1.0, University of Utah

  54. Eckart C (1930) Phys Rev 35:1303

    Article  CAS  Google Scholar 

  55. Galano A, Narciso-López M, Francisco-Márquez M (2008) J Phys Chem A 114:5796

    Article  Google Scholar 

  56. Smiechowski M (2009) Chem Phys Lett 480:178

    Article  CAS  Google Scholar 

  57. Millet DB, Goldstein AH, James D. Allan JD, Bates TS, Boudries H, Bower KN, Coe H, Ma Y, McKay M, Quinn PK, Sullivan A, Weber RJ,Worsnop DR (2004) J. Geophys. Res., 109: D23S16

  58. Alvarez-Idaboy JR, Mora-Diez N, Vivier-Bunge A (2000) J Am Chem Soc 122:3715

    Article  CAS  Google Scholar 

  59. Alvarez-Idaboy JR, Mora-Diez N, Boyd RJ, Vivier-Bunge A (2001) J Am Chem Soc 123:2018

    Article  CAS  Google Scholar 

  60. Mora-Diez N, Alvarez-Idaboy JR, Boyd RJ, Boyd RJ (2001) J Phys Chem A 105:9034

    Article  CAS  Google Scholar 

  61. Galano A, Alvarez-Idaboy JR (2008) In: Goodsite ME, Johnson MS (eds) Advances in quantum chemistry: applications of quantum chemistry to the atmosphere, vol 55, chap 12. Elsevier, Amsterdam, p 245

    Google Scholar 

  62. Francisco-Marquez M, Alvarez-Idaboy JR, Galano A, Vivier-Bunge A (2003) Phys Chem Chem Phys 5:1392

    Article  CAS  Google Scholar 

  63. Uc VH, Alvarez-Idaboy JR, Galano A, Vivier-Bunge A (2008) J Phys Chem A 112:7608

    Article  CAS  Google Scholar 

  64. Galano A, Alvarez-Idaboy JR, Bravo-Perez G, Ruiz-Santoyo ME (2002) Phys Chem Chem Phys 4:4648

    Article  CAS  Google Scholar 

  65. Vega-Rodriguez A, Alvarez-Idaboy JR (2009) Phys Chem Chem Phys 11:7649

    Article  CAS  Google Scholar 

  66. Uc VH, Alvarez-Idaboy JR, Galano A, Garcia-Cruz I, Vivier-Bunge A (2006) J Phys Chem A 110:10155

    Article  CAS  Google Scholar 

  67. Zhang D, Zhang R, Park J, North SW (2002) J Am Chem Soc 124:9600

    Article  CAS  Google Scholar 

  68. Zhao J, Khalizov A, Zhang R (2009) J Phys Chem A 113:680

    Article  CAS  Google Scholar 

  69. Wang L, Khalizov AF, Zheng J, Xu W, Ma Y, Lal V, Zhang R (2010) Nature Geosci 3:238

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Laboratorio de Visualización y Cómputo Paralelo at Universidad Autónoma Metropolitana-Iztapalapa and the Dirección General de Servicios de Cómputo Académico (DGSCA) at Universidad Nacional Autónoma de México. This work was partially supported by a grant from the DGAPA UNAM (PAPIIT-IN203808). C. Iuga thanks the Instituto de Ciencia y Tecnología del D. F., México for a postdoctoral fellowship. We thank professors W. T. Duncan, R. L. Bell, and T. N. Truong for providing The Rate program through the Internet. This work is the result of the Mexico-EU international collaboration network RMAYS, funded by FONCICYT, Project No. 94666.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Raul Alvarez-Idaboy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iuga, C., Alvarez-Idaboy, J.R. & Vivier-Bunge, A. On the possible catalytic role of a single water molecule in the acetone + OH gas phase reaction: a theoretical pseudo-second-order kinetics study. Theor Chem Acc 129, 209–217 (2011). https://doi.org/10.1007/s00214-011-0921-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0921-0

Keywords

Navigation