Skip to main content
Log in

Predicting binding energies of CDK6 inhibitors in the hit-to-lead process

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The main challenge for the “hit-to-lead” stage in the drug discovery process relies on the accuracy of existing docking methods. In fact, accuracy of docking methods depends not only on the scoring function used to rank the poses but also on the ability of the docking method to reproduce the experimental binding mode. At this purpose, the performance of different approximations to properly dock and score compounds with known activity in a narrow range of IC50 values was analyzed. A set of five ATP-competitive CDK6 inhibitors and three receptor conformations for CDK6 were considered for analysis, and three methodologies were used and analyzed in order to include different degrees of receptor flexibility. Thus, a completely rigid receptor is considered when using Glide, while the so-called Induced Fit Docking Protocol accounts for receptor sidechain rearrangements. Finally, force field calculations were also performed in order to consider a completely flexible receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166

    Article  CAS  Google Scholar 

  2. Galons H, Oumata N, Meijer L (2010) Cyclin-dependent kinase inhibitors: a survey of recent patent literature. Expert Opin Ther Pat 20(3):377–404

    Article  CAS  Google Scholar 

  3. Massague J (2004) G1 cell-cycle control and cancer. Nature 432(7015):298–306

    Article  CAS  Google Scholar 

  4. Toogood PL et al (2005) Discovery of a Potent and Selective Inhibitor of Cyclin-Dependent Kinase 4/6. J Med Chem 48(7):2388–2406

    Article  CAS  Google Scholar 

  5. Lapenna S, Giordano A (2009) Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 8(7):547–566

    Article  CAS  Google Scholar 

  6. Malumbres M et al (2008) CDK inhibitors in cancer therapy: what is next? Trends Pharmacol Sci 29(1):16–21

    Article  CAS  Google Scholar 

  7. Leach AR, Shoichet BK, Peishoff CE (2006) Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J Med Chem 49(20):5851–5855

    Article  CAS  Google Scholar 

  8. Cheng T et al (2009) Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model 49(4):1079–1093

    Article  CAS  Google Scholar 

  9. Duca JS, Madison VS, Voigt JH (2008) Cross-docking of inhibitors into CDK2 structures. 1. J Chem Inf Model 48(3):659–668

    Article  CAS  Google Scholar 

  10. Voigt JH et al (2008) Cross-docking of inhibitors into CDK2 structures 2. J Chem Inf Model 48(3):669–678

    Article  CAS  Google Scholar 

  11. Schrödinger (2009) Glide, version 5.5. New York

  12. Schrödinger (2010) Maestro, version 9.1. New York

  13. Schrödinger (2009) Induced Fit Docking protocol (Schrödinger Suite 2009). New York, NY. p. Schrödinger Suite 2009: Glide version 5.5, Schrödinger, LLC, New York, NY, 2009; Prime version 2.1, Schrödinger, LLC, New York, NY, 2009

  14. Kollman PA et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897

    Article  CAS  Google Scholar 

  15. Lu H et al (2005) Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin. J Med Chem 48(3):737–743

    Article  CAS  Google Scholar 

  16. Lu H, Schulze-Gahmen U (2006) Toward understanding the structural basis of cyclin-dependent kinase 6 specific inhibition. J Med Chem 49(13):3826–3831

    Article  CAS  Google Scholar 

  17. Beattie JF et al (2003) Cyclin-dependent kinase 4 inhibitors as a treatment for cancer. Part 1: Identification and optimisation of substituted 4, 6-bis anilino pyrimidines. Bioorg Med Chem Lett 13(18):2955–2960

    Article  CAS  Google Scholar 

  18. Ikuta M et al (2001) Crystallographic approach to identification of cyclin-dependent kinase 4 (CDK4)-specific inhibitors by using CDK4 Mimic CDK2 protein. J Biol Chem 276(29):27548–27554

    Article  CAS  Google Scholar 

  19. Schulze-Gahmen U, Jung JU, Kim SH (1999) Crystal structure of a viral cyclin, a positive regulator of cyclin-dependent kinase 6. Structure 7(3):245–254

    Article  CAS  Google Scholar 

  20. Jeffrey PD, Tong L, Pavletich NP (2000) Structural basis of inhibition of CDK-cyclin complexes by INK4 inhibitors. Genes Dev 14(24):3115–3125

    Article  CAS  Google Scholar 

  21. Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  CAS  Google Scholar 

  22. Viktor H et al (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinform 65(3):712–725

    Article  Google Scholar 

  23. Junmei W et al (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  Google Scholar 

  24. William LJ et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  Google Scholar 

  25. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N · log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  26. Schrödinger (2009) LigPrep, version 2.3. New York

  27. Friesner RA et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196

    Article  CAS  Google Scholar 

  28. Sherman W et al (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49(2):534–553

    Article  CAS  Google Scholar 

  29. Schrödinger (2009) Glide 5.5 User Manual. Schrödinger Press

  30. Hussain A, Melville JL, Hirst JD (2010) Molecular docking and QSAR of aplyronine A and analogues: potent inhibitors of actin. J Comput Aided Mol Des 24(1):1–15

    Article  CAS  Google Scholar 

  31. Rodriguez A et al (2005) Assessment of the performance of cluster analysis grouping using pharmacophores as molecular descriptors. J Mol Struct Theochem 727(1–3):81–87

    Article  CAS  Google Scholar 

  32. Berendsen HJC et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  33. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  34. Onufriev A, Bashford D, Case DA (2000) Modification of the generalized born model suitable for macromolecules. J Phys Chem B 104(15):3712–3720

    Article  CAS  Google Scholar 

  35. Jörg W, Peter SS, Still WC (1999) Optimization of Gaussian surface calculations and extension to solvent-accessible surface areas. J Comput Chem 20(7):688–703

    Article  Google Scholar 

  36. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins Struct Funct Bioinform 55(2):383–394

    Article  CAS  Google Scholar 

  37. Sadiq SK et al (2010) Accurate ensemble molecular dynamics binding free energy ranking of multidrug-resistant HIV-1 proteases. J Chem Inf Model 50(5):890–905

    Article  CAS  Google Scholar 

  38. Zhang X, Li X, Wang R (2009) Interpretation of the binding affinities of PTP1B inhibitors with the MM-GB/SA method and the X-score scoring function. J Chem Inf Model 49(4):1033–1048

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Spanish Ministry of Science and Technology supported this work through project CTQ2006-06588/BQU. This work was also supported in part by the Generalitat de Catalunya through project 2009SGR1308. We are also grateful to the Departament d’Universitat, Recerca i Societat de la informació de la Generalitat de Catalunya i del Fons Social Europeu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Rubio-Martinez.

Additional information

Published as part of the special issue celebrating theoretical and computational chemistry in Spain.

Electronic supplementary material

Table S-1 and S-2 containing detailed information about docking protocols. Table S-3 with the mean values of the three complexes for each MMPB/GBSA term and partial summation.

Supplementary material 1 (DOC 60 kb)

Supplementary material 2 (DOC 60 kb)

Supplementary material 3 (DOC 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado-Soler, L., Ariñez-Soriano, J., Granadino-Roldán, J.M. et al. Predicting binding energies of CDK6 inhibitors in the hit-to-lead process. Theor Chem Acc 128, 807–823 (2011). https://doi.org/10.1007/s00214-010-0857-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0857-9

Keywords

Navigation