Skip to main content
Log in

An amber compatible molecular mechanics force field for the anticancer drug topotecan

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A molecular mechanics (MM) force field has been developed for the topotecan (TPT) molecule, an anticancer drug the only molecular target of which is the human topoisomerase I-DNA covalent complex. We proceeded according to the amber03 force field parametrization protocol, based on quantum mechanical calculations with solvent effects included by means of continuum models. An adequate description of the electronic states of TPT has been ensured comparing calculated IR vibrational frequencies and NMR chemical shifts with experimental results. Bonded molecular parameters have been verified by comparison with ab initio normal mode vibrational analysis, while atomic charges have been fitted either using the restrained electrostatic potential fitting (RESP) or the multi-conformational RESP (MultiRESP) procedures. Particular attention has been paid to the parametrization of the dimethylamino group in ring A, for which several energy minima were found. The reliability of the force field has been checked comparing the results obtained from a classical molecular dynamics simulation with quantum mechanics ab initio energy calculations. The development of the topotecan force field makes it possible to carry out reliable simulations of the topotecan–topoisomerase–DNA ternary complex, thus allowing the investigation of important biological questions, such as the selective resistance to topotecan caused by single residue topoisomerase I mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wall ME, Wani MC, Cook CE, Palmer KH, Mcphail AT, Sim GA (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminata. J Am Chem Soc 88:3888–3890

    Article  CAS  Google Scholar 

  2. Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6:789–802

    Article  CAS  Google Scholar 

  3. Pommier Y, Pourquier P, Fan Y, Strumberg D (1998) Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim Biophys Acta Gene Struct Expr 1400:83–105

    CAS  Google Scholar 

  4. Staker BL, Feese MD, Cushman M, Pommier Y, Zembower D, Stewart L, Burgin AB (2005) Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J Med Chem 48:2336–2345

    Article  CAS  Google Scholar 

  5. Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB, Stewart L (2002) The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci USA 99:15387–15392

    Article  CAS  Google Scholar 

  6. Chrencik JE, Staker BL, Burgin AB, Pourquier P, Pommier Y, Stewart L, Redinbo MR (2004) Mechanisms of camptothecin resistance by human topoisomerase I mutations. J Mol Biol 339:773–784

    Article  CAS  Google Scholar 

  7. Fiorani P, Bruselles A, Falconi M, Chillemi G, Desideri A, Benedetti P (2003) Single mutation in the linker domain confers protein flexibility and camptothecin resistance to human topoisomerase I. J Biol Chem 278:43268–43275

    Article  CAS  Google Scholar 

  8. Fiorani P, Chillemi G, Losasso C, Castelli S, Desideri A (2006) The different cleavage DNA sequence specificity explains the camptothecin resistance of the human topoisomerase I Glu418Lys mutant. Nucleic Acids Res 34:5093–5100

    Article  CAS  Google Scholar 

  9. Losasso C, Cretaio E, Fiorani P, D’Annessa I, Chillemi G, Benedetti P (2008) A single mutation in the 729 residue modulates human DNA topoisomerase IB DNA binding and drug resistance. Nucleic Acids Res 36:5635–5644

    Article  CAS  Google Scholar 

  10. Chillemi G, D’Annessa I, Fiorani P, Losasso C, Benedetti P, Desideri A (2008) Thr729 in human topoisomerase I modulates anti-cancer drug resistance by altering protein domain communications as suggested by molecular dynamics simulations. Nucleic Acids Res 36:5645–5651

    Article  CAS  Google Scholar 

  11. Fiorani P, Tesauro C, Mancini G, Chillemi G, D’Annessa I, Graziani G, Tentori L, Muzi A, Desideri A (2009) Evidence of the crucial role of the linker domain on the catalytic activity of human topoisomerase I by experimental and simulative characterization of the Lys681Ala mutant. Nucleic Acids Res 37:6849–6858

    Article  CAS  Google Scholar 

  12. Chillemi G, Fiorani P, Castelli S, Bruselles A, Benedetti P, Desideri A (2005) Effect on DNA relaxation of the single Thr718Ala mutation in human topoisomerase I: a functional and molecular dynamics study. Nucleic Acids Res 33:3339–3350

    Article  CAS  Google Scholar 

  13. Siu F-M, Che C-M (2008) Persistence of camptothecin analog–topoisomerase I–DNA ternary complexes: a molecular dynamics study. J Am Chem Soc 130:17928–17937

    Article  CAS  Google Scholar 

  14. Bocian W, Kawcki R, Bednarek E, Sitkowski J, Williamson MP, Hansen PE, Kozerski L (2008) Binding of topotecan to a nicked DNA oligomer in solution. Chem Eur J 14:2788–2794

    Article  CAS  Google Scholar 

  15. Sanna N, Chillemi G, Grandi A, Castelli S, Desideri A, Barone V (2005) New hints on the Ph-driven tautomeric equilibria of the topotecan anticancer drug in aqueous solutions from an integrated spectroscopic and quantum-mechanical approach. J Am Chem Soc 127:15429–15436

    Article  CAS  Google Scholar 

  16. Sanna N, Chillemi G, Gontrani L, Grandi A, Mancini G, Castelli S, Zagotto G, Zazza C, Barone V, Desideri A (2009) UV–Vis spectra of the anticancer campothecin family drugs in aqueous solution: Specific spectroscopic signatures unraveled by a combined computational and experimental study. J Phys Chem B 113:5369–5375

    Article  CAS  Google Scholar 

  17. Bailly C (2003) Homocamptothecins: potent topoisomerase I inhibitors and promising anticancer drugs. Crit Rev Oncol/Hematol 45:91–108

    Article  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Laham Al MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford, CT

  19. Cossi M, Scalmani G, Rega N, Barone V (2002) New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys 117:43–54

    Article  CAS  Google Scholar 

  20. Rauhut G, Pulay P (1995) Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields. J Phys Chem 99:3093–3100

    Article  CAS  Google Scholar 

  21. Vemparala S, Ivanov I, Pophristic V, Spiegel K, Klein ML (2006) Ab initio calculations of intramolecular parameters for a class of arylamide polymers. J Comput Chem 27:693–700

    Article  CAS  Google Scholar 

  22. Aleksandrov A, Simonson T (2009) Molecular mechanics models for tetracycline analogs. J Comput Chem 30:243–255

    Article  CAS  Google Scholar 

  23. Mohandas P, Umapathy S (1997) Density-functional studies on the structure and vibrational spectra of transient intermediates of p-benzoquinone. J Phys Chem A 101:4449–4459

    Article  CAS  Google Scholar 

  24. Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  25. Jameson A, Jameson C (1987) Gas-phase 13C chemical shifts in the zero-pressure limit: refinements to the absolute shielding scale for 13C. Chem Phys Lett 134:461–466

    Article  CAS  Google Scholar 

  26. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  27. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  28. Cornell WD, Cieplak P, Bayly CI, Kollman PA (1993) Application of RESP charges to calculate conformational energies, hydrogen bond energies and free energies of solvation. J Am Chem Soc 115:9620–9631

    Article  CAS  Google Scholar 

  29. Cieplak P, Cornell WD, Bayly C, Kollman PA (1995) Application of the multimolecule and multiconformational RESP methodology to biopolymers: charge derivation for DNA, RNA and proteins. J Comput Chem 16:1357–1377

    Article  CAS  Google Scholar 

  30. Mobley, DL, Chodera JD, Dill KA (2006) On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. J Chem Phys 125:084902+

    Google Scholar 

  31. Sorin EJ, Pande VS (2005) Empirical force-field assessment: the interplay between backbone torsions and noncovalent term scaling. J Comput Chem 26:682–690

    Article  CAS  Google Scholar 

  32. Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  33. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N [center-dot] log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  34. Hess B, Bekker H, Berendsen HJ, Fraaije C, Johannes GEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  35. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99:12562–12566

    Article  CAS  Google Scholar 

  36. van der Spoel D, Berendsen HJ (1997) Molecular dynamics simulations of Leu-enkephalin in water and DMSO. Biophys J 72:2032–2041

    Article  Google Scholar 

  37. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  38. Grace. http://plasma-gate.weizmann.ac.il/Grace/

  39. Octave. http://www.gnu.org/software/octave/index.html

  40. Hunter J, Matplotlib. http://matplotlib.sourceforge.net/users/credits.html

  41. Vogt F, Dellorco P, Diederich A, Su Q, Wood J, Zuber G, Katrincic L, Mueller R, Busby D, Debrosse C (2006) A study of variable hydration states in topotecan hydrochloride. J Pharm Biomed Anal 40:1080–1088

    Article  CAS  Google Scholar 

  42. Zhao H, Lee C, Sai P, Choe YH, Boro M, Pendri A, Guan S, Greenwald RB (2000) 20-O-acylcamptothecin derivatives: evidence for lactone stabilization. J Org Chem 65:4601–4606

    Article  CAS  Google Scholar 

  43. Stocker U, Juchli D, van Gunsteren WF (2003) Increasing the time step and efficiency of molecular dynamics simulations: optimal solutions for equilibrium simulations or structure refinement of large biomolecules. Mol Simul 29:123–138

    Article  CAS  Google Scholar 

  44. Verweij J, Lund B, Beijnen J, Planting A, de Boer-Dennert M, Koier I, Rosing H, Hansen H (1993) Phase I and pharmacokinetics study of topotecan, a new topoisomerase I inhibitor. Ann Oncol: Official Journal of Eur Soc Med Oncol/ESMO 4:673–678

    CAS  Google Scholar 

  45. Burke TG, Mi Z (1994) The structural basis of camptothecin interactions with human serum albumin: impact on drug stability. J Med Chem 37:40–46

    Article  CAS  Google Scholar 

  46. Rothenberg ML (1997) Topoisomerase I inhibitors: review and update. Ann Oncol: Official Journal of Eur Soc Med Oncol/ESMO 8:837–855

    CAS  Google Scholar 

  47. Kuczera K, Unruh J, Johnson CK, Jas GS (2009) Reorientations of aromatic amino acids and their side chain models: anisotropy measurements and molecular dynamics simulations. J Phys Chem A (in press). doi:10.1021/jp907382h

  48. Pavone M, Brancato G, Morelli G, Barone V (2006) Spectroscopic properties in the liquid phase: combining high-level ab initio calculations and classical molecular dynamics. ChemPhysChem 7:148–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank C. Zazza for his contribution to data analysis and comments, and Prof. Jens Z. Pedersen for help in revising the manuscript. This work was partly supported by grants ‘Characterization of human topoisomerase I mutants resistant to camptothecin and its derivatives’ from AIRC (Associazione Italiana Ricerca Cancro) to A. D. and FILAS-Lazio regional agency under the project CAMPTOFAR. We acknowledge CASPUR Supercomputing Consortium for computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Chillemi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chillemi, G., Coletta, A., Mancini, G. et al. An amber compatible molecular mechanics force field for the anticancer drug topotecan. Theor Chem Acc 127, 293–302 (2010). https://doi.org/10.1007/s00214-009-0715-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0715-9

Keywords

Navigation