Skip to main content
Log in

Contribution of both M1 and M4 receptors to muscarinic agonist-mediated attenuation of the cocaine discriminative stimulus in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

We previously showed that muscarinic agonists with M1 and/or M4 receptor affinities attenuated cocaine discrimination and self-administration in wild-type mice but not in M1/M4 double-knockout mice.

Objective

This study aims to elucidate the respective contributions of M1 and M4 receptors to this effect.

Methods

Knockout mice lacking either the M1 subtype (M −/−1 ) or the M4 subtype (M −/−4 ) and wild-type mice were trained to discriminate 10 mg/kg cocaine from saline. Muscarinic ligands were tested for modulation of cocaine discrimination: xanomeline (M1/M4-preferring agonist), VU0357017 (M1-selective partial agonist), 77-LH-28-1 (M1 agonist), and BQCA (M1-selective positive allosteric modulator).

Results

Xanomeline produced rightward shifts in the cocaine dose–effect curve in all three genotypes, but most robustly in wild-type mice. VU0357017 produced rightward shifts in the cocaine dose–effect curve in wild-type and M −/−4 mice, but not in M −/−1 mice. Response rates were suppressed by xanomeline in wild-type and M −/−1 but not in M −/−4 mice and were unaltered by VU0357017. 77-LH-28-1 and BQCA also showed evidence of attenuating cocaine’s discriminative stimulus, but at doses that suppressed responding or had other undesirable effects. Intriguingly, both VU0357017 and 77-LH-28-1 exhibited U-shaped dose–effect functions in attenuating cocaine discrimination. None of the drugs substituted for the cocaine stimulus.

Conclusions

Attenuation of the cocaine stimulus by VU0357017 depended upon M1 receptors, and full effects of xanomeline depended upon both M1 and M4 receptors. Therefore M1-selective agonists and mixed M1/M4 agonists may be promising leads for developing medications that block cocaine’s effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alderson HL, Latimer MP, Blaha CD, Phillips AG, Winn P (2004) An examination of d-amphetamine self-administration in pedunculopontine tegmental nucleus-lesioned rats. Neuroscience 125:349–58

    Article  PubMed  CAS  Google Scholar 

  • Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6:51–8

    Article  PubMed  CAS  Google Scholar 

  • Andersen MB, Werge T, Fink-Jensen A (2007) The acetylcholinesterase inhibitor galantamine inhibits d-amphetamine-induced psychotic-like behavior in Cebus monkeys. J Pharmacol Exp Ther 321:1179–82

    Article  PubMed  CAS  Google Scholar 

  • Bechara A, van der Kooy D (1989) The tegmental pedunculopontine nucleus: a brain-stem output of the limbic system critical for the conditioned place preferences produced by morphine and amphetamine. J Neurosci 9:3400–9

    PubMed  CAS  Google Scholar 

  • Bernard V, Normand E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12:3591–600

    PubMed  CAS  Google Scholar 

  • Blaha CD, Allen LF, Das S, Inglis WL, Latimer MP, Vincent SR, Winn P (1996) Modulation of dopamine efflux in the nucleus accumbens after cholinergic stimulation of the ventral tegmental area in intact, pedunculopontine tegmental nucleus-lesioned, and laterodorsal tegmental nucleus-lesioned rats. J Neurosci 16:714–22

    PubMed  CAS  Google Scholar 

  • Bolam JP, Francis CM, Henderson Z (1991) Cholinergic input to dopaminergic neurons in the substantia nigra: a double immunocytochemical study. Neuroscience 41:483–94

    Article  PubMed  CAS  Google Scholar 

  • Bonsi P, Martella G, Cuomo D, Platania P, Sciamanna G, Bernardi G, Wess J, Pisani A (2008) Loss of muscarinic autoreceptor function impairs long-term depression but not long-term potentiation in the striatum. J Neurosci 28:6258–63

    Article  PubMed  CAS  Google Scholar 

  • Carrigan KA, Dykstra LA (2007) Behavioral effects of morphine and cocaine in M1 muscarinic acetylcholine receptor-deficient mice. Psychopharmacology (Berl) 191:985–93

    Article  CAS  Google Scholar 

  • De La Garza R 2nd, Mahoney JJ 3rd, Culbertson C, Shoptaw S, Newton TF (2008a) The acetylcholinesterase inhibitor rivastigmine does not alter total choices for methamphetamine, but may reduce positive subjective effects, in a laboratory model of intravenous self-administration in human volunteers. Pharmacol Biochem Behav 89:200–8

    Article  Google Scholar 

  • De La Garza R, Shoptaw S, Newton TF (2008b) Evaluation of the cardiovascular and subjective effects of rivastigmine in combination with methamphetamine in methamphetamine-dependent human volunteers. Int J Neuropsychopharmacol 11:729–41

    Google Scholar 

  • Dencker D, Wortwein G, Weikop P, Jeon J, Thomsen M, Sager TN, Mork A, Woldbye DP, Wess J, Fink-Jensen (2011) Involvement of a subpopulation of neuronal M4 muscarinic acetylcholine receptors in the antipsychotic-like effects of the M1/M4 preferring muscarinic receptor agonist xanomeline. J Neurosci 31:5905–5908

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, Morelli M, Consolo S (1994) Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends Neurosci 17:228–33

    Article  PubMed  Google Scholar 

  • Eglen RM (2006) Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol 26:219–33

    Article  PubMed  CAS  Google Scholar 

  • Fink-Jensen A, Fedorova I, Wortwein G, Woldbye DP, Rasmussen T, Thomsen M, Bolwig TG, Knitowski KM, McKinzie DL, Yamada M, Wess J, Basile A (2003) Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J Neurosci Res 74:91–6

    Article  PubMed  CAS  Google Scholar 

  • Gomeza J, Zhang L, Kostenis E, Felder C, Bymaster F, Brodkin J, Shannon H, Xia B, Deng C, Wess J (1999) Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M(4) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci U S A 96:10483–8

    Article  PubMed  CAS  Google Scholar 

  • Grasing K, He S, Yang Y (2008) Dose-related effects of the acetylcholinesterase inhibitor tacrine on cocaine and food self-administration in rats. Psychopharmacology (Berl) 196:133–42

    Article  CAS  Google Scholar 

  • Grasing K, He S, Yang Y (2009) Long-lasting decreases in cocaine-reinforced behavior following treatment with the cholinesterase inhibitor tacrine in rats selectively bred for drug self-administration. Pharmacol Biochem Behav 94:169–78

    Article  PubMed  CAS  Google Scholar 

  • Grasing K, Mathur D, Newton TF, DeSouza C (2010) Donepezil treatment and the subjective effects of intravenous cocaine in dependent individuals. Drug Alcohol Depend 107:69–75

    Article  PubMed  CAS  Google Scholar 

  • Hardouin SN, Richmond KN, Zimmerman A, Hamilton SE, Feigl EO, Nathanson NM (2002) Altered cardiovascular responses in mice lacking the M(1) muscarinic acetylcholine receptor. J Pharmacol Exp Ther 301:129–37

    Article  PubMed  CAS  Google Scholar 

  • Heinrich JN, Butera JA, Carrick T, Kramer A, Kowal D, Lock T, Marquis KL, Pausch MH, Popiolek M, Sun SC, Tseng E, Uveges AJ, Mayer SC (2009) Pharmacological comparison of muscarinic ligands: historical versus more recent muscarinic M1-preferring receptor agonists. Eur J Pharmacol 605:53–6

    Article  PubMed  CAS  Google Scholar 

  • Hersch SM, Levey AI (1995) Diverse pre- and post-synaptic expression of m1–m4 muscarinic receptor proteins in neurons and afferents in the rat neostriatum. Life Sci 56:931–8

    Article  PubMed  CAS  Google Scholar 

  • Hersch SM, Gutekunst CA, Rees HD, Heilman CJ, Levey AI (1994) Distribution of m1–m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. J Neurosci 14:3351–63

    PubMed  CAS  Google Scholar 

  • Hikida T, Kaneko S, Isobe T, Kitabatake Y, Watanabe D, Pastan I, Nakanishi S (2001) Increased sensitivity to cocaine by cholinergic cell ablation in nucleus accumbens. Proc Natl Acad Sci U S A 98:13351–4

    Article  PubMed  CAS  Google Scholar 

  • Hikida T, Kitabatake Y, Pastan I, Nakanishi S (2003) Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine. Proc Natl Acad Sci U S A 100:6169–73

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa J, Chung YC, Li Z, Dai J, Meltzer HY (2002) Cholinergic modulation of basal and amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Res 958:176–84

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Wise RA (2002) Rewarding effects of the cholinergic agents carbachol and neostigmine in the posterior ventral tegmental area. J Neurosci 22:9895–904

    PubMed  CAS  Google Scholar 

  • Jeon J, Dencker D, Wortwein G, Woldbye DP, Cui Y, Davis AA, Levey AI, Schutz G, Sager TN, Mork A, Li C, Deng CX, Fink-Jensen A, Wess J (2010) A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. J Neurosci 30:2396–405

    Article  PubMed  CAS  Google Scholar 

  • Jones CK, Brady AE, Davis AA, Xiang Z, Bubser M, Tantawy MN, Kane AS, Bridges TM, Kennedy JP, Bradley SR, Peterson TE, Ansari MS, Baldwin RM, Kessler RM, Deutch AY, Lah JJ, Levey AI, Lindsley CW, Conn PJ (2008) Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J Neurosci 28:10422–33

    Article  PubMed  CAS  Google Scholar 

  • Kane BE, Grant MK, El-Fakahany EE, Ferguson DM (2008) Synthesis and evaluation of xanomeline analogs—probing the wash-resistant phenomenon at the M1 muscarinic acetylcholine receptor. Bioorg Med Chem 16:1376–92

    Article  PubMed  CAS  Google Scholar 

  • Kitabatake Y, Hikida T, Watanabe D, Pastan I, Nakanishi S (2003) Impairment of reward-related learning by cholinergic cell ablation in the striatum. Proc Natl Acad Sci U S A 100:7965–70

    Article  PubMed  CAS  Google Scholar 

  • Langmead CJ, Austin NE, Branch CL, Brown JT, Buchanan KA, Davies CH, Forbes IT, Fry VA, Hagan JJ, Herdon HJ, Jones GA, Jeggo R, Kew JN, Mazzali A, Melarange R, Patel N, Pardoe J, Randall AD, Roberts C, Roopun A, Starr KR, Teriakidis A, Wood MD, Whittington M, Wu Z, Watson J (2008a) Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28-1. Br J Pharmacol 154:1104–15

    Article  PubMed  CAS  Google Scholar 

  • Langmead CJ, Watson J, Reavill C (2008b) Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther 117:232–43

    Article  PubMed  CAS  Google Scholar 

  • Lebois EP, Bridges TM, Lewis LM, Dawson ES, Kane AS, Xiang Z, Jadhav SB, Yin H, Kennedy JP, Meiler J, Niswender CM, Jones CK, Conn PJ, Weaver CD, Lindsley CW (2009) Discovery and characterization of novel subtype-selective allosteric agonists for the investigation of M1 receptor function in the central nervous system. ACS Chemical Neurosci 1:104–121

    Article  Google Scholar 

  • Lester DB, Miller AD, Blaha CD (2010) Muscarinic receptor blockade in the ventral tegmental area attenuates cocaine enhancement of laterodorsal tegmentum stimulation-evoked accumbens dopamine efflux in the mouse. Synapse 64:216–23

    Article  PubMed  CAS  Google Scholar 

  • Loughlin SE, Fallon JH (1984) Substantia nigra and ventral tegmental area projections to cortex: topography and collateralization. Neuroscience 11:425–35

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Seager MA, Wittmann M, Jacobson M, Bickel D, Burno M, Jones K, Graufelds VK, Xu G, Pearson M, McCampbell A, Gaspar R, Shughrue P, Danziger A, Regan C, Flick R, Pascarella D, Garson S, Doran S, Kreatsoulas C, Veng L, Lindsley CW, Shipe W, Kuduk S, Sur C, Kinney G, Seabrook GR, Ray WJ (2009) Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc Natl Acad Sci U S A 106:15950–5

    Article  PubMed  CAS  Google Scholar 

  • Mark GP, Kinney AE, Grubb MC, Zhu X, Finn DA, Mader SL, Berger SP, Bechtholt AJ (2006) Injection of oxotremorine in nucleus accumbens shell reduces cocaine but not food self-administration in rats. Brain Res 1123:51–9

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa T, Yamada M, Duttaroy A, Wess J (2001) Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 21:5239–50

    PubMed  CAS  Google Scholar 

  • Oakman SA, Faris PL, Kerr PE, Cozzari C, Hartman BK (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 15:5859–69

    PubMed  CAS  Google Scholar 

  • Olmstead MC, Franklin KB (1993) Effects of pedunculopontine tegmental nucleus lesions on morphine-induced conditioned place preference and analgesia in the formalin test. Neuroscience 57:411–8

    Article  PubMed  CAS  Google Scholar 

  • Raffa RB (2009) The M5 muscarinic receptor as possible target for treatment of drug abuse. J Clin Pharm Ther 34:623–9

    Article  PubMed  CAS  Google Scholar 

  • Sauerberg P, Olesen PH, Nielsen S, Treppendahl S, Sheardown MJ, Honore T, Mitch CH, Ward JS, Pike AJ, Bymaster FP et al (1992) Novel functional M1 selective muscarinic agonists. Synthesis and structure–activity relationships of 3-(1, 2, 5-thiadiazolyl)-1, 2, 5, 6-tetrahydro-1-methylpyridines. J Med Chem 35:2274–83

    Article  PubMed  CAS  Google Scholar 

  • Schmidt LS, Thomsen M, Weikop P, Dencker D, Wess J, Woldbye DP, Wortwein G, Fink-Jensen A (2011) Increased cocaine self-administration in M(4) muscarinic acetylcholine receptor knockout mice. Psychopharmacology (Berl). doi:10.1007/s00213-011-2225-4

  • Shabani S, Foster R, Gubner N, Phillips TJ, Mark GP (2010) Muscarinic type 2 receptors in the lateral dorsal tegmental area modulate cocaine and food seeking behavior in rats. Neuroscience 170:559–69

    Article  PubMed  CAS  Google Scholar 

  • Shannon HE, Bymaster FP, Calligaro DO, Greenwood B, Mitch CH, Sawyer BD, Ward JS, Wong DT, Olesen PH, Sheardown MJ et al (1994) Xanomeline: a novel muscarinic receptor agonist with functional selectivity for M1 receptors. J Pharmacol Exp Ther 269:271–81

    PubMed  CAS  Google Scholar 

  • Shirey JK, Brady AE, Jones PJ, Davis AA, Bridges TM, Kennedy JP, Jadhav SB, Menon UN, Xiang Z, Watson ML, Christian EP, Doherty JJ, Quirk MC, Snyder DH, Lah JJ, Levey AI, Nicolle MM, Lindsley CW, Conn PJ (2009) A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J Neurosci 29:14271–86

    Article  PubMed  CAS  Google Scholar 

  • Smiley JF, Levey AI, Mesulam MM (1999) m2 muscarinic receptor immunolocalization in cholinergic cells of the monkey basal forebrain and striatum. Neuroscience 90:803–14

    Article  PubMed  CAS  Google Scholar 

  • Smith JE, Co C, Yin X, Sizemore GM, Liguori A, Johnson WE 3rd, Martin TJ (2004) Involvement of cholinergic neuronal systems in intravenous cocaine self-administration. Neurosci Biobehav Rev 27:841–50

    Article  PubMed  CAS  Google Scholar 

  • Sofuoglu M, Mooney M (2009) Cholinergic functioning in stimulant addiction: implications for medications development. CNS Drugs 23:939–52

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu Y, Yamanishi Y, Hagino Y, Yamamoto H, Ikeda K (2006) Differential effects of donepezil on methamphetamine and cocaine dependencies. Ann N Y Acad Sci 1074:418–26

    Article  PubMed  CAS  Google Scholar 

  • Tanda G, Ebbs AL, Kopajtic TA, Elias LM, Campbell BL, Newman AH, Katz JL (2007) Effects of muscarinic M1 receptor blockade on cocaine-induced elevations of brain dopamine levels and locomotor behavior in rats. J Pharmacol Exp Ther 321:334–44

    Article  PubMed  CAS  Google Scholar 

  • Thomsen M, Woldbye DP, Wortwein G, Fink-Jensen A, Wess J, Caine SB (2005) Reduced cocaine self-administration in muscarinic M5 acetylcholine receptor-deficient mice. J Neurosci 25:8141–9

    Article  PubMed  CAS  Google Scholar 

  • Thomsen M, Conn PJ, Lindsley C, Wess J, Boon JY, Fulton BS, Fink-Jensen A, Caine SB (2010) Attenuation of cocaine's reinforcing and discriminative stimulus effects via muscarinic M1 acetylcholine receptor stimulation. J Pharmacol Exp Ther 332:959–69

    Article  PubMed  CAS  Google Scholar 

  • Threlfell S, Clements MA, Khodai T, Pienaar IS, Exley R, Wess J, Cragg SJ (2010) Striatal muscarinic receptors promote activity dependence of dopamine transmission via distinct receptor subtypes on cholinergic interneurons in ventral versus dorsal striatum. J Neurosci 30:3398–408

    Article  PubMed  CAS  Google Scholar 

  • Vilaro MT, Palacios JM, Mengod G (1990) Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett 114:154–9

    Article  PubMed  CAS  Google Scholar 

  • Weiner DM, Levey AI, Brann MR (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci U S A 87:7050–4

    Article  PubMed  CAS  Google Scholar 

  • Wess J (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 44:423–50

    Article  PubMed  CAS  Google Scholar 

  • Williams MJ, Adinoff B (2008) The role of acetylcholine in cocaine addiction. Neuropsychopharmacology 33:1779–97

    Article  PubMed  CAS  Google Scholar 

  • Winhusen TM, Somoza EC, Harrer JM, Mezinskis JP, Montgomery MA, Goldsmith RJ, Coleman FS, Bloch DA, Leiderman DB, Singal BM, Berger P, Elkashef A (2005) A placebo-controlled screening trial of tiagabine, sertraline and donepezil as cocaine dependence treatments. Addiction 100(Suppl 1):68–77

    Article  PubMed  Google Scholar 

  • Yeomans J, Baptista M (1997) Both nicotinic and muscarinic receptors in ventral tegmental area contribute to brain-stimulation reward. Pharmacol Biochem Behav 57:915–21

    Article  PubMed  CAS  Google Scholar 

  • Yeomans JS, Kofman O, McFarlane V (1985) Cholinergic involvement in lateral hypothalamic rewarding brain stimulation. Brain Res 329:19–26

    Article  PubMed  CAS  Google Scholar 

  • Yeomans JS, Takeuchi J, Baptista M, Flynn DD, Lepik K, Nobrega J, Fulton J, Ralph MR (2000) Brain-stimulation reward thresholds raised by an antisense oligonucleotide for the M5 muscarinic receptor infused near dopamine cells. J Neurosci 20:8861–7

    PubMed  CAS  Google Scholar 

  • You ZB, Wang B, Zitzman D, Wise RA (2008) Acetylcholine release in the mesocorticolimbic dopamine system during cocaine seeking: conditioned and unconditioned contributions to reward and motivation. J Neurosci 28:9021–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Disorders (J.W.), by the Molecular Libraries Probe Production Centers Network (U54MH084659, P.J.C and C.W.L.), and by a grant from the National Institutes on Drug Abuse (DA027825, M.T.). All procedures were carried out in accordance with the Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research (National Research Council 2003) and US laws. We thank Joon Y. Boon for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgane Thomsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomsen, M., Lindsley, C.W., Conn, P.J. et al. Contribution of both M1 and M4 receptors to muscarinic agonist-mediated attenuation of the cocaine discriminative stimulus in mice. Psychopharmacology 220, 673–685 (2012). https://doi.org/10.1007/s00213-011-2516-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2516-9

Keywords

Navigation