Skip to main content

Advertisement

Log in

The muscarinic receptor antagonist tropicamide suppresses tremulous jaw movements in a rodent model of parkinsonian tremor: possible role of M4 receptors

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Nonselective muscarinic acetylcholine antagonists have been used for several years as antiparkinsonian drugs. However, there are at least five subtypes of muscarinic receptor (M1–5). Neostriatal M4 receptors have been implicated in aspects of motor function, and it has been suggested that M4 antagonists could be used as treatments for parkinsonism.

Objective

Currently, there is a lack of highly selective M4 antagonists that readily penetrate the blood brain barrier. Thus, the present studies focused upon the effects of tropicamide, a muscarinic acetylcholine receptor antagonist with moderate binding selectivity for the M4 receptor subtype.

Materials and methods

Tremulous jaw movements were used as a model of parkinsonian tremor in these studies, and the effects of tropicamide were compared with those of the nonselective muscarinic antagonist atropine.

Results

Tropicamide suppressed the tremulous jaw movements induced by the muscarinic agonist pilocarpine and the dopamine antagonist pimozide. Analysis of the dose–response curves indicated that tropicamide showed approximately the same potency as atropine for suppression of pilocarpine-induced jaw movements but was more potent than atropine on the suppression of pimozide-induced jaw movements. In contrast, atropine was more potent than tropicamide in terms of impairing performance on visual stimulus detection and delayed nonmatch-to-position tasks.

Conclusions

These studies demonstrate that tropicamide, which currently is used clinically for ophthalmic purposes, can exert actions that are consistent with antiparkinsonian effects. Moreover, the different pattern of effects shown by tropicamide compared to those of atropine on motor vs cognitive tasks could be due to the modest M4 selectivity shown by tropicamide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aquilonius SM (1980) Cholinergic mechanisms in the CNS related to Parkinson’s disease. In: Parkinson’s disease—current progress, problems and management. Elsevier, North Holland, Amsterdam, The Netherlands

  • Arai M (2000) Parkinsonism onset in a patient concurrently using tiapride and donepezil. Intern Med 39:863

    PubMed  CAS  Google Scholar 

  • Bain PG (2002) The management of tremor. J Neurol Neurosurg Psychiatry 72:I3–I9

    PubMed  Google Scholar 

  • Baskin P, Salamone JD (1993) Vacuous jaw movements in rats induced by acute reserpine administration: interactions with different doses of apomorphine. Pharmacol Biochem Behav 46:793–797

    PubMed  CAS  Google Scholar 

  • Baskin PP, Gianutsos G, Salamone JD (1994) Repeated scopolamine injections sensitize rats to pilocarpine-induced vacuous jaw movements and enhance striatal muscarinic receptor binding. Pharmacol Biochem Behav 49:437–442

    PubMed  CAS  Google Scholar 

  • Bergman H, Deuschl G (2002) Pathophysiology of Parkinson’s Disease: from clinical neurology to basic neuroscience and back. Mov Disord 17(suppl. 3):s28–s40

    PubMed  Google Scholar 

  • Bezchlibnyk-Butler KZ, Remington GJ (1994) Antiparkinsonian drugs in the treatment of neuroleptic-induced extrapyramidal symptoms. Can J Psychiatry 39:74–84

    PubMed  CAS  Google Scholar 

  • Bourke D, Drukenbrod RW (1998). Possible association between donepezil and worsening Parkinson’s disease. Ann Pharmacother 32:610–611

    PubMed  CAS  Google Scholar 

  • Blosser JC, Macor JE, Messer WS (1997) Challenges and opportunities for developing muscarinic receptor subtype-based therapeutic agents. Drug Dev Res 40:101–103

    CAS  Google Scholar 

  • Bushnell PJ (1990) Modelling working and reference memory in rats: effects of scopolamine on delayed matching-to-position. Behav Pharmacol 1:419–427

    Google Scholar 

  • Cabeza-Alvarez CI, Gonzolez-Rubio M, Carcia Montero R, Alvarez-Tejerina A (1999) Parkinsonism syndrome related to tacrine. Neurologia 14:96

    PubMed  CAS  Google Scholar 

  • Carlson BB, Trevitt JT, Salamone JD (2000) Effects of H1 antagonists on cholinomimetic-induced tremulous jaw movements: studies of diphenhydramine, doxepin, and mepyramine. Pharmacol Biochem Behav 65:683–689

    PubMed  CAS  Google Scholar 

  • Carlson BB, Behrstock S, Tobin AJ, Salamone JD (2003) Brain implantations of engineered GABA-releasing cells suppress tremor in an animal model of Parkinsonism. Neuroscience 119:927–932

    PubMed  CAS  Google Scholar 

  • Carriero DL, Outslay G, Mayorga AJ, Aberman J, Gianutsos G, Salamone JD (1997) Motor dysfunction produced by tacrine administration in rats. Pharmacol Biochem Behav 58:851–858

    PubMed  CAS  Google Scholar 

  • Cenci M, Whishaw IQ, Schallert T (2002) Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci 3:574–579

    PubMed  CAS  Google Scholar 

  • Chesler E, Salamone J (1996) Effects of acute and repeated clozapine injections on cholinomimetic-induced vacuous jaw movements. Pharmacol Biochem Behav 54:619–624

    PubMed  CAS  Google Scholar 

  • Chouinard G, Annable L (1982) Pimozide in the treatment of newly admitted schizophrenic patients. Psychopharmacology 76:13–19

    PubMed  CAS  Google Scholar 

  • Claveria LE, Teychenne PF, Calne DB, Haskayne L, Petrie A, Pallis CA, Lodge-Patch IC (1975) Tardive dyskinesia treated with pimozide. J Neurol Sci 24:393–401

    PubMed  CAS  Google Scholar 

  • Correa M, Mingote S, Betz A, Wisniecki A, Salamone JD (2003) Substantia nigra pars reticulata GABA is involved in the regulation of operant lever pressing: pharmacological and microdialysis studies. Neuroscience 119:759–766

    PubMed  CAS  Google Scholar 

  • Correa M, Wisniecki A, Betz A, Dobson DR, O’Neill MF, O’Neill MJ, Salamone JD (2004) The adenosine A2A antagonist KF 17837 reverses the locomotor suppression and tremulous jaw movements induced by haloperidol in rats: possible relevance to parkinsonism. Behav Brain Res 148:47–54

    PubMed  CAS  Google Scholar 

  • Cousins MS, Carriero DL, Salamone JD (1997) Tremulous jaw movements induced by the acetylcholinesterase inhibitor tacrine: effects of antiparkinsonian drugs. Eur J Pharmacol 322:137–145

    PubMed  CAS  Google Scholar 

  • Cousins MS, Atherton A, Salamone JD (1998) Behavioral and electromyographic characterization of the local frequency of tacrine-induced tremulous jaw movements. Physiol Behav 64:153–158

    PubMed  CAS  Google Scholar 

  • DeBoer P, Abercrombie ED, Heeringa M, Westerink BHC (1993) Differential effect of systemic administration of bromocriptine and l-DOPA on the release of acetylcholine from striatum of intact and 6-OHDA-treated rats. Brain Res 608:198–203

    PubMed  CAS  Google Scholar 

  • Delong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    PubMed  CAS  Google Scholar 

  • Deuschl G, Raethjen J, Lindemann M, Krack P (2001) The pathophysiology of tremor. Muscle Nerve 24:716–735

    PubMed  CAS  Google Scholar 

  • Drinkenburg WH, Sondag HN, Coenders CJ, Andrews JS, Vossen JM (1995) Effects of selective antagonism or depletion of the cholinergic system on visual discrimination performance in rats. Behav Pharmacol 6:695–702

    PubMed  CAS  Google Scholar 

  • Dunnett SB (1985) Comparative effects of cholinergic drugs and lesions of nucleus basalis or fimbria-fornix on delayed matching in rats. Psychopharmacology (Berl) 87:357–363

    CAS  Google Scholar 

  • Duvoisin R (1967) Cholinergic-anticholinergic antagonism in Parkinsonism. Arch Neurol 17:124–136

    PubMed  CAS  Google Scholar 

  • Felder CC (1995) Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 9:619–625

    PubMed  CAS  Google Scholar 

  • Felder CC, Bymaster FP, Ward J, DeLapp N (2000) Therapeutic opportunities for muscarinic receptors in the central nervous system. J Med Chem 43:4333–4353

    PubMed  CAS  Google Scholar 

  • Finn M, Jassen A, Baskin P, Salamone JD (1997a) Tremulous characteristics of the vacuous jaw movements induced by pilocarpine and ventrolateral striatal dopamine depletions. Pharmacol Biochem Behav 57:243–249

    PubMed  CAS  Google Scholar 

  • Finn M, Mayorga AJ, Conlan A, Salamone JD (1997b) Involvement of pallidal and nigral GABA mechanisms in the generation of tremulous jaw movements in rats. Neurosci 80: 535–544

    CAS  Google Scholar 

  • Frey PW, Colliver JA (1973) Sensitivity and responsivity measures for discrimination learning. Learn Motiv 4:327–342

    Google Scholar 

  • Garcia N, Santafe MM, Salon I, Lanuza MA, Tomas J (2005) Expression of muscarinic acetylcholine receptors (M1-, M2-, M3- and M4-type) in the neuromuscular junction of the newborn and adult rat. Histol Histopathol 20:733–743

    PubMed  CAS  Google Scholar 

  • Hagan JJ, Jansen JH, Broekkamp CL (1987) Blockade of spatial learning by the M1 muscarinic antagonist pirenzepine. Psychopharmacology 93:470–476

    PubMed  CAS  Google Scholar 

  • Harbaugh RE, Roberts DW, Coombs DW, Saunders RL, Reeder TM (1984) Preliminary report: intracranial cholinergic drug infusion in patients with Alzheimer’s disease. Neurosurgery 15:514–518

    PubMed  CAS  Google Scholar 

  • Hauber W (1998) Involvement of basal ganglia transmitter systems in movement initiation. Prog Neurobiol 56:507–540

    PubMed  CAS  Google Scholar 

  • Iram S, Hoyle C (2005) Potentiation of sympathetic neuromuscular transmission mediated by muscarinic receptors in guinea pig isolated vas deferens. Naunyn-Schmiedeberg’s Arch Pharmacol 371:212–220

    CAS  Google Scholar 

  • Ishiwari I, Betz AJ, Weber SM, Felsted J, Salamone JD (2005) Validation of the tremulous jaw movement model for assessment of the motor effects of typical and atypical antipychotics: effects of pimozide (Orap) in rats. Pharmacol Biochem Behav 80:351–362

    PubMed  CAS  Google Scholar 

  • Iwasaki Y, Wakata N, Kinoshita M (1988) Parkinsonism induced by pyridostigmine. Acta Neurol Scand 78:236

    PubMed  CAS  Google Scholar 

  • Jicha GA, Salamone JD (1991) Vacuous jaw movements and feeding deficits in rats with ventrolateral striatal dopamine depletion: possible relation to parkinsonian symptoms. J Neurosci 11:3822–3829

    PubMed  CAS  Google Scholar 

  • Kao KP, Kwan SY, Lin KP, Chang YC (1993) Coexistence of Parkinson’s disease and myasthenia gravis: a case report. Clin Neurol Neurosurg 95:137–139

    PubMed  CAS  Google Scholar 

  • Karasawa H, Taketo MM, Matsui M (2003) Loss of anti-cataleptic effect of scopolamine in mice lacking muscarinic acetylcholine receptor subtype 4. Eur J Pharmacol 468:15–19

    PubMed  CAS  Google Scholar 

  • Katzenschlager R, Sampaio C, Costa J, Lees A (2003) Anticholinergics for symptomatic management of Parkinson’s disease. Cochrane Database Syst Rev 2:CD003735

    PubMed  Google Scholar 

  • Kelley A, Bakshi V, Delfs J, Lang C (1989) Cholinergic stimulation of the vetrolateral striatum elicits mouth movements in rats: pharmacological and regional specificity. Psychopharmacology 99:542–549

    PubMed  CAS  Google Scholar 

  • Keltner NL (1994) Tacrine: a pharmacological approach to Alzheimer’s disease. J Psychosoc Nurs Ment Health Serv 32:37–39

    PubMed  CAS  Google Scholar 

  • Keppel G (1991) Design and analysis: a researcher’s handbook. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Lang AE, Lees A (2002a) DA agonists—Non-Ergot derivatives: ropinirole. Mov Disord 17(suppl. 4):s98–s102

    Google Scholar 

  • Lang AE, Lees A (2002b) DA agonists—ergot derivatives: pergolide. Mov Disord 17(suppl. 4):s79–s82

    Google Scholar 

  • Lazareno S, Buckley NJ, Roberts F (1990) Characterization of muscarinic m4 binding sites in rabbit lung, chicken heart and NG108-15 cells. Mol Pharmacol 38:805–815

    PubMed  CAS  Google Scholar 

  • Lazartigues E, Brefel-Courbon C, Tran MA, Montastruc JL, Rascol O (1999) Spontaneously hypertensive rats cholinergic hyper-responsiveness: central and peripheral pharmacological mechanisms. Br J Pharmacol 127:1657–1665

    PubMed  CAS  Google Scholar 

  • McGaughy J, Sarter M (1995a) Effects of chlordiazepoxide and scopolamine, but not aging, on the detection and identification of conditional visual stimuli. J Gerontol Ser A Biol Sci Med Sci 50:B90–B96

    CAS  Google Scholar 

  • McGaughy J, Sarter M (1995b) Behavioral vigilance in rats: task validation and effects of age, amphetamine, and benzodiazepine receptor ligands. Psychopharmacol 117:340–357

    CAS  Google Scholar 

  • Mailman R, Huang X, Nichols DE (2001) Parkinson’s disease and D1 receptors. Curr Opin Investig Drugs 2:1581–1582

    Google Scholar 

  • Marsden C, Duvoisin R, Jenner P, Parkes J, Pycock C, Tarsy D (1975) Relationship between animal models and clinical parkinsonism. Adv Neurol 9:165–175

    PubMed  CAS  Google Scholar 

  • Mayorga AJ, Carriero DL, Cousins MS, Gianutsos G, Salamone JD (1997) Tremulous jaw movements produced by acute tacrine administration: possible relation to parkinsonian side effects. Pharmacol Biochem Behav 56:273–279

    PubMed  CAS  Google Scholar 

  • Mayorga AJ, Cousins MS, Trevitt JT, Conlan A, Gianutsos G, Salamone JD (1999) Characterization of the muscarinic receptor subtype mediating pilocarpine-induced tremulous jaw movements in rats. Eur J Pharmacol 364:7–11

    PubMed  CAS  Google Scholar 

  • McEvoy JP (1983) The clinical use of anticholinergic drugs as treatment for extrapyramidal side effects of neuroleptic drugs. J Clin Psychopharmacol 3:288–301

    PubMed  CAS  Google Scholar 

  • McLaughlin PJ, Brown CM, Winston KM, Thakur G, Lu D, Makriyannis A, Salamone JD (2005) The novel cannabinoid agonist AM 411 produces a biphasic effect on accuracy in a visual target detection task in rats. Behav Pharmacol 16:477–486

    PubMed  CAS  Google Scholar 

  • McSwain ML, Forman LM (1995) Severe parkinsonian symptom development on combination treatment with tacrine and haloperidol. J Clin Psychopharmacol 15:284

    PubMed  CAS  Google Scholar 

  • Milanov I (2001) Electromyographic differentiation of tremors. Clin Neurophysiol 112:1626–1632

    PubMed  CAS  Google Scholar 

  • Navan P, Findley LJ, Jeffs JA, Pearce RK, Bain PG (2003) Double-blind, single-dose cross-over study of the effects of pramipexole, pergolide and placebo on rest tremor and UPDRS part III in Parkinson’s disease. Mov Disord 18:176–180

    PubMed  Google Scholar 

  • Navan P, Findley LJ, Undy MB, Pearce RK, Bain PG (2005) A randomly assigned double-blind cross-over study examining the relative anti-parkinsonian tremor effects of pramipexole and pergolide. Eur J Neurol 12:1–8

    PubMed  CAS  Google Scholar 

  • Noring U, Povlesen UJ, Casey DE, Gerlach J (1984) Effect of a cholinomimetic drug (RS 86) in tardive dyskinesia and drug-related parkinsonism. Psychopharmacology 84:569–571

    PubMed  CAS  Google Scholar 

  • Obeso JA, Rodrigquez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzolo N, Olnow CW (2000) Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 23:S8–S19

    PubMed  CAS  Google Scholar 

  • Oertel WH, Doedel RC (1995) International guide to drugs for Parkinson’s disease. Mov Disord 10:121–131

    PubMed  CAS  Google Scholar 

  • Oki T, Takagi Y, Inagaki S, Taketo MM, Manabe T, Matsui M, Yamada S (2005) Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Brain Res Mol Brain Res 133:6–11

    PubMed  CAS  Google Scholar 

  • Olianas MC, Onali P (1999) PD 102807, a novel muscarinic M4 receptor antagonist, discriminates between striatal and cortical muscarinic receptors coupled to cyclic AMP. Life Sci 65:2233–2240

    PubMed  CAS  Google Scholar 

  • Ott BR, Lannon MC (1992) Exacerbation of Parkinsonism by tacrine. Clin Neuropharmacol 15:322–325

    PubMed  CAS  Google Scholar 

  • Parkman HP, Pagano AP, Ryan JP (1999) Subtypes of muscarinic receptors regulating gallbladder cholinergic contractions. Am J Physiol 6:G1243–50

    Google Scholar 

  • Pogarell O, Gasser T, van Hilten JJ, Spieker S, Pollentier S, Meier D, Oertel WH (2002) Pramipexole in patients with Parkinson’s disease and marked drug resistant tremor: a randomised, double blind, placebo controlled multicentre study. J Neurol Neurosurg Psych 72:713–720

    CAS  Google Scholar 

  • Potier S, Psarropoulou C (2004) Modulation of muscarinic facilitation of epileptiform discharges in immature rat neocortex. Brain Res 997:194–206

    PubMed  CAS  Google Scholar 

  • Presburger G, Robinson JK (1999) Spatial signal detection in rats is differentially disrupted by Δ-9-tetrahydrocannabinol, scopolamine, and MK-801. Behav Brain Res 99:27–34

    PubMed  CAS  Google Scholar 

  • Robinson JK (1997) Pharmacological models of amnesia: A reexamination of the effects of cholinergic muscarinic antagonist scopolamine and NMDA-receptor antagonist MK-801 on delayed nonmatching-to-position in rats. Psychobiology 25:229–235

    CAS  Google Scholar 

  • Rodriguez Diaz M, Abdala P, Barroso-Chinea P, Obeso J, Gonzalez-Hernandez T (2001) Motor behavioural changes after intracerebroventricular injection of 6-hydroxydopamine in the rat: an animal model of Parkinson’s disease. Behav Brain Res 122:79–92

    PubMed  CAS  Google Scholar 

  • Romrell J, Fernandez HH, Okun MS (2003) Rationale for current therapies in Parkinson’s disease. Expert Opin Pharmacother 4:1747–1761

    Article  PubMed  CAS  Google Scholar 

  • Rupniak N (1983) Cholinergic manipulation of perioral behavior induced by chronic neuroleptic adminstration to rats. Psychopharmacology 79:226–230

    PubMed  CAS  Google Scholar 

  • Rupniak N, Jenner P, Marsden C (1985) Pharmacological characterization of spontaneous or drug-induced purposeless chewing movements in rats. Psychopharmacology 85:71–79

    PubMed  CAS  Google Scholar 

  • Sahgal A (1987) Contrasting effects of vasopressin, desglycinamide-vasopressin and amphetamine on a delayed matching to position task in rats. Psychopharmacology 93:243–249

    PubMed  CAS  Google Scholar 

  • Salamone JD (1986) Behavioral functions of nucleus basalis magnocellularis and its relationship to dementia. Trends Neurosci 9:256–258

    Google Scholar 

  • Salamone JD (1997) Centrally acting antagonists of muscarinic M4 receptors. Emerg Ther Targets 1:93–95

    Google Scholar 

  • Salamone J, Baskin P (1996) Vacuous jaw movements induced by acute reserpine and low-dose apomorphine: possible model of parkinsonian tremor. Pharmacol Biochem Behav 53:179–183

    PubMed  CAS  Google Scholar 

  • Salamone JD, Lalies MD, Channell SL, Iversen SD (1986) Behavioural and pharmacological characterization of the mouth movements induced by muscarinic agonists in the rat. Psychopharmacology 88:467–471

    PubMed  CAS  Google Scholar 

  • Salamone JD, Johnson CJ, McCullough LD, Steinpreis RE (1990) Lateral striatal cholinergic mechanisms involved in oral motor activities in the rat. Psychopharmacology 102:529–534

    PubMed  CAS  Google Scholar 

  • Salamone JD, Mayorga AJ, Trevitt JT, Cousins MS, Conlan A, Nawab A (1998) Tremulous jaw movements in rats: a model of parkinsonian tremor. Prog Neurobiol 56:591–611

    PubMed  CAS  Google Scholar 

  • Salamone J, Correa M, Carlson B, Wisniecki A, Mayorga A, Nisenbaum E, Nisenbaum L, Felder C (2001) Neostriatal muscarinic receptor subtypes involved in the generation of tremulous jaw movements in rodents. Implications for cholinergic involvement in parkinsonism. Life Sci 68:2579–2584

    PubMed  CAS  Google Scholar 

  • Salamone JD, Carlson BB, Rios C, Lentini E, Correa M, Wisniecki A, Betz A (2005) Dopamine agonists suppress cholinomimetic-induced tremulous jaw movements in an animal model of parkinsonism: tremorolytic effects of pergolide, ropinirole and CY 208-243. Behav Brain Res 156:173–179

    PubMed  CAS  Google Scholar 

  • Santiago MP, Potter LT (2001) Biotinylated m4-toxin demonstrates more M4 muscarinic receptor protein on direct than indirect striatal projection neurons. Brain Res 894:12–20

    PubMed  CAS  Google Scholar 

  • Sarter M, Givens B, Bruno JP (2001) The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Rev 35:146–160

    Google Scholar 

  • Schrag A, Schelosky L, Scholz U, Poewe W (1999) Reduction of Parkinsonian signs in patients with Parkinson’s disease by dopaminergic versus anticholinergic single-dose challenges. Mov Disord 14:252–255

    PubMed  CAS  Google Scholar 

  • Schrag A, Keens J, Warner J (2002) Ropinirole for the treatment of tremor in early Parkinson’s disease. Eur J Neurosci 9:253–257

    CAS  Google Scholar 

  • Shea C, MacKnight C, Rockwood K (1998) Donepezil for treatment of dementia with Lewy bodies: a case series of nine patients. Int Psychogeriatr 10:229–238

    PubMed  CAS  Google Scholar 

  • Shi H, Wang H, Wang Z (1999) M3 muscarinic receptor activation of a delayed rectifier potassium current in canine atrial myocytes. Life Sci 64:PL251–PL257

    PubMed  CAS  Google Scholar 

  • Simola N, Fenu S, Baraldi PG, Tabrizi MA, Morelli M (2004) Blockade of adenosine A2A receptors antagonizes parkinsonian tremor in the rat tacrine model by an action on specific striatal regions. Exp Neurol 189:182–188

    PubMed  CAS  Google Scholar 

  • Steinpreis RE, Salamone JD (1993) Effects of acute haloperidol and reserpine administration on vacuous jaw movements in three different age groups of rats. Pharmacol Biochem Behav 46:405–409

    PubMed  CAS  Google Scholar 

  • Steinpreis RE, Baskin P, Salamone JD (1993) Vacuous jaw movements induced by sub-chronic administration of haloperidol: interactions with scopolamine. Psychopharmacology 111:99–105

    PubMed  CAS  Google Scholar 

  • Stewart BR, Jenner P, Marsden CD (1988) The pharmacological characterisation of pilocarpine-induced purposeless chewing behaviour in the rat. Psychopharmacology 96:55–62

    PubMed  CAS  Google Scholar 

  • Sultana A, McMonagle T (2000) Pimozide for schizophrenia and related psychoses. Cochrane Database Syst Rev 3:CD001949

    PubMed  Google Scholar 

  • Tarsy D, Parkes JD, Marsden CD (1975) Metoclopramide and pimozide in Parkinson’s disease and levodopa-induced dyskinesias. J Neurol Neurosurg Psychiat 38:331–335

    PubMed  CAS  Google Scholar 

  • Tarsy D, Baldessarini RJ, Tarazi FI (2002). Effects of newer antipsychotics on extrapyramidal function. CNS Drugs 16:23–45

    PubMed  CAS  Google Scholar 

  • Trevitt JT, Lyons M, Aberman J, Carriero D, Finn M, Salamone JD (1997) Effects of clozapine, thioridazine, risperidone and haloperidol on behavioral tests related to extrapyramidal motor function. Psychopharmacology 132:74–81

    PubMed  CAS  Google Scholar 

  • Trevitt J, Atherton A, Aberman J, Salamone JD (1998) Effects of subchronic administration of clozapine, thioridazine and haloperidol on tests related to extrapyramidal motor function in the rat. Psychopharmacology 137:61–66

    PubMed  CAS  Google Scholar 

  • Trevitt JT, Carlson BB, Correa M, Keene A, Morales M, Salamone JD (2002) Interactions between D1 receptors and GABA mechanisms in substantia nigra pars reticulata of the rat: neurochemical and behavioral studies. Psychopharmacology 159:229–237

    PubMed  CAS  Google Scholar 

  • Ukai M, Okuda A, Mamiya T (2004) Effects of anticholinergic drugs selective for muscarinic receptor subtypes on prepulse inhibition in mice. Eur J Pharmacol 492:183–187

    PubMed  CAS  Google Scholar 

  • Vuori ML, Kaila T, Iisalo E, Saari KM (1994) Systemic absorption and anticholinergic activity of topically applied tropicamide. J Ocul Pharmacol 10:431–437

    PubMed  CAS  Google Scholar 

  • Waelbroeck M, Tastenoy M, Camus J, Christophe J (1990) Binding of selective antagonists to four muscarinic receptors (M1–M4) in rat forebrain. Mol Pharmacol 38:267–273

    PubMed  CAS  Google Scholar 

  • Warburton DM, Brown K (1971) Attenuation of stimulus sensitvity induced by scopolamine. Nature 230:126–127

    PubMed  CAS  Google Scholar 

  • Wess J (1996) Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 10:69–99

    PubMed  CAS  Google Scholar 

  • Wess J (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 44:423–450

    PubMed  CAS  Google Scholar 

  • Wichmann T, Kliem MA, DeLong MR (2001) Antiparkinsonian and behavioral effects of inactivation of the substantia nigra pars reticulata in hemiparkinsonian primates. Exp Neurol 167:410–424

    PubMed  CAS  Google Scholar 

  • Wilms H, Sievers J, Deuschl G (1999) Animal models of tremor. Mov Disord 14:557–571

    PubMed  CAS  Google Scholar 

  • Winogrodzka A, Wagenaar RC, Bergmans P, Vellinga A, Booij J, van Royen EA, van Emmerik REA, Stoof JC, Wolters EC (2001) Rigidity decreases resting tremor intensity in Parkinson’s disease: a [123I]β-CIT SPECT study in early nonmedicated patients. Mov Disord 16:1033–1040

    PubMed  CAS  Google Scholar 

  • Wisniecki A, Correa M, Arizzi MN, Ishiwari K, Salamone JD (2003) Motor effects of GABAA antagonism in globus palidus: studies of locomotion and tremulous jaw movements Psychopharmacology 170:140–149

    PubMed  CAS  Google Scholar 

  • Young A, Penney J (1993) In Jankovic J, Tolosa E (eds) Parkinson’s disease and movement disorders. Williams & Wilkins, Baltimore, MD

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Salamone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betz, A.J., McLaughlin, P.J., Burgos, M. et al. The muscarinic receptor antagonist tropicamide suppresses tremulous jaw movements in a rodent model of parkinsonian tremor: possible role of M4 receptors. Psychopharmacology 194, 347–359 (2007). https://doi.org/10.1007/s00213-007-0844-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0844-6

Keywords

Navigation