Skip to main content

Advertisement

Log in

Operant responding for conditioned and unconditioned reinforcers in rats is differentially enhanced by the primary reinforcing and reinforcement-enhancing effects of nicotine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Nicotine self-administration in rats is modest when response-contingent nicotine infusions are delivered alone (primary reinforcement) but robust when nicotine infusions are combined with a mildly reinforcing non-pharmacological stimulus. Furthermore, response-independent (non-contingent) nicotine administration also elevates responding for that same non-pharmacological stimulus, suggesting that in addition to primary reinforcement, nicotine can enhance the incentive value of other reinforcers.

Objectives

In this study, we tested the hypothesis that the reinforcement-enhancing effects of non-contingent nicotine are more dependent on the reinforcing strength of the non-pharmacological stimulus than are the effects of contingent nicotine.

Materials and methods

A weakly reinforcing light-tone stimulus was established as a conditioned reinforcer by repeated pairings with sucrose for some rats, or by delivery in an explicitly unpaired design with sucrose to other rats. Subsequently, both groups lever pressed for the stimulus with contingent nicotine, non-contingent nicotine (0.06 mg kg−1 per infusion, freebase), or non-contingent saline, according to fixed ratio and progressive ratio reinforcement schedules.

Results

Compared to sucrose-unpaired training, repeated association with sucrose established the light-tone stimulus as a robust conditioned reinforcer. Contingent and non-contingent nicotine equally elevated responding for this conditioned stimulus. Conversely, for the less reinforcing (sucrose-unpaired) stimulus contingent nicotine more effectively elevated behavior compared to non-contingent nicotine.

Conclusions

The reinforcement-enhancing effect of nicotine increases behavior controlled by both conditioned and unconditioned reinforcers; however, for less salient stimuli associative processes derived from the primary reinforcing effects of contingent nicotine may also be important. These data suggest that nicotine present in tobacco may differentially modulate stimulus-driven behavior in smokers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balfour DJ (2004) The neurobiology of tobacco dependence: a preclinical perspective on the role of the dopamine projections to the nucleus. Nicotine Tob Res 6:899–912

    Article  PubMed  CAS  Google Scholar 

  • Balfour DJ, Wright AE, Benwell ME, Birrell CE (2000) The putative role of extra-synaptic mesolimbic dopamine in the neurobiology of nicotine dependence. Behav Brain Res 113:73–83

    Article  PubMed  CAS  Google Scholar 

  • Brody AL, Mandelkern MA, London ED, Childress AR, Lee GS, Bota RG, Ho ML, Saxena S, Baxter LR Jr, Madsen D, Jarvik ME (2002) Brain metabolic changes during cigarette craving. Arch Gen Psychiatry 59:1162–1172

    Article  PubMed  Google Scholar 

  • Caggiula AR, Donny EC, White AR, Chaudhri N, Booth S, Gharib MA, Hoffman A, Perkins KA, Sved AF (2001) Cue dependency of nicotine self-administration and smoking. Pharmacol Biochem Behav 70:515–530

    Article  PubMed  CAS  Google Scholar 

  • Caggiula AR, Donny EC, White AR, Chaudhri N, Booth S, Gharib MA, Hoffman A, Perkins KA, Sved AF (2002a) Environmental stimuli promote the acquisition of nicotine self-administration in rats. Psychopharmacology (Berl) 163:230–237

    Article  CAS  Google Scholar 

  • Caggiula AR, Donny EC, Chaudhri N, Perkins KA, Evans-Martin FF, Sved AF (2002b) Importance of nonpharmacological factors in nicotine self-administration. Physiol Behav 77:683–687

    Article  PubMed  CAS  Google Scholar 

  • Chaudhri N, Caggiula AR, Donny EC, Booth S, Gharib MA, Craven LA, Allen SS, Sved AF, Perkins KA (2005) Sex differences in the contribution of nicotine and nonpharmacological stimuli to nicotine self-administration in rats. Psychopharmacology (Berl) 180:258–266

    Article  CAS  Google Scholar 

  • Chaudhri N, Caggiula AR, Donny EC, Palmatier MI, Liu X, Sved AF (2006) Complex interactions between nicotine and nonpharmacological stimuli reveal multiple roles for nicotine in reinforcement. Psychopharmacology (Berl) 184:353–366

    Article  CAS  Google Scholar 

  • Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O’Brien CP (1999) Limbic activation during cue-induced cocaine craving. Am J Psychiatry 156(1):11–18

    PubMed  CAS  Google Scholar 

  • Cohen C, Perrault G, Griebel G, Soubrie P (2005) Nicotine-associated cues maintain nicotine-seeking behavior in rats several weeks after nicotine withdrawal: reversal by the cannabinoid (CB1) receptor antagonist, rimonabant (SR141716). Neuropsychopharmacology 30:145–155

    Article  PubMed  CAS  Google Scholar 

  • Corrigall WA, Coen KM (1989) Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology (Berl) 99:473–478

    Article  CAS  Google Scholar 

  • Corrigall WA, Coen KM (1991) Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacology (Berl) 104:171–176

    Article  CAS  Google Scholar 

  • Corrigall WA, Franklin KB, Coen KM, Clarke PB (1992) The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl) 107:285–289

    Article  CAS  Google Scholar 

  • Corrigall WA, Coen KM, Adamson KL (1994) Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res 653:278–284

    Article  PubMed  CAS  Google Scholar 

  • Corrigall WA, Coen KM, Adamson KL, Chow BL, Zhang J (2000) Response of nicotine self-administration in the rat to manipulations of mu-opioid and gamma-aminobutyric acid receptors in the ventral tegmental area. Psychopharmacology (Berl) 149:107–114

    Article  CAS  Google Scholar 

  • Dani JA, De Biasi M (2001) Cellular mechanisms of nicotine addiction. Pharmacol Biochem Behav 70:439–446

    Article  PubMed  CAS  Google Scholar 

  • Depoortere RY, Li DH, Lane JD, Emmett-Oglesby MW (1993) Parameters of self-administration of cocaine in rats under a progressive-ratio schedule. Pharmacol Biochem Behav 45:539–548

    Article  PubMed  CAS  Google Scholar 

  • Di Ciano P, Everitt BJ (2004) Conditioned reinforcing properties of stimuli paired with self-administered cocaine, heroin or sucrose: implications for the persistence of addictive behaviour. Neuropharmacology 47(Suppl 1):202–213

    PubMed  Google Scholar 

  • Donny EC, Chaudhri N, Caggiula AR, Evans-Martin FF, Booth S, Gharib MA, Clements LA, Sved AF (2003) Operant responding for a visual reinforcer in rats is enhanced by non-contingent nicotine: implications for nicotine self-administration and reinforcement. Psychopharmacology (Berl) 169:68–76

    Article  CAS  Google Scholar 

  • Donny EC, Caggiula AR, Mielke MM, Booth S, Gharib MA, Hoffman A, Maldovan V, Shupenko C, McCallum SE (1999) Nicotine self-administration in rats on a progressive ratio schedule of reinforcement. Psychopharmacology (Berl) 147:135–142

    Article  CAS  Google Scholar 

  • Donny EC, Caggiula AR, Mielke MM, Jacobs KS, Rose C, Sved AF (1998) Acquisition of nicotine self-administration in rats: the effects of dose, feeding schedule, and drug contingency. Psychopharmacology (Berl) 136:83–90

    Article  CAS  Google Scholar 

  • Donny EC, Caggiula AR, Knopf S, Brown C (1995) Nicotine self-administration in rats. Psychopharmacology (Berl) 122:390–394

    Article  CAS  Google Scholar 

  • Due DL, Huettel SA, Hall WG, Rubin DC (2002) Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging. Am J Psychiatry 159:954–960

    Article  PubMed  Google Scholar 

  • Field M, Duka T (2002) Cues paired with a low dose of alcohol acquire conditioned incentive properties in social drinkers. Psychopharmacology (Berl) 159(3):325–334

    Article  CAS  Google Scholar 

  • Fletcher PJ, Korth KM, Chambers JW (1999) Selective destruction of brain serotonin neurons by 5,7-dihydroxytryptamine increases responding for a conditioned reward. Psychopharmacology (Berl) 147:291–299

    Article  CAS  Google Scholar 

  • Goldberg SR, Spealman RD, Goldberg DM (1981) Persistent behavior at high rates maintained by intravenous self-administration of nicotine. Science 214:573–575

    Article  PubMed  CAS  Google Scholar 

  • Jose Lanca A, Sanelli TR, Corrigall WA (2000) Nicotine-induced fos expression in the pedunculopontine mesencephalic tegmentum in the rat. Neuropharmacology 39:2808–2817

    Article  PubMed  CAS  Google Scholar 

  • Lanca AJ, Adamson KL, Coen KM, Chow BL, Corrigall WA (2000) The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: a correlative neuroanatomical and behavioral study. Neuroscience 96:735–742

    Article  PubMed  CAS  Google Scholar 

  • Lehman RS (1995) Statistics in the behavioral sciences. A conceptual approach. Brooks/Cole Publishing Company, Brooks/Cole Publishing Company

    Google Scholar 

  • Lesage MG, Burroughs D, Dufek M, Keyler DE, Pentel PR (2004) Reinstatement of nicotine self-administration in rats by presentation of nicotine-paired stimuli, but not nicotine priming. Pharmacol Biochem Behav 79:507–513

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Caggiula AR, Palmatier MI, Donny EC, Chaudhri N, Sved AF (2005) Reinforcement-enhancing effect of nicotine depends on the reinforcement valence of nondrug stimulus. Society for Neuroscience Abstract 1027.14

  • Mansvelder HD, McGehee DS (2000) Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27:349–357

    Article  PubMed  CAS  Google Scholar 

  • Markou A, Weiss f, Gold LH, Caine SB, Schulteis G, Koob GF (1993) Animal models of drug craving. Psychopharmacology (Berl) 112(2–3):163–182

    Article  CAS  Google Scholar 

  • Matteson GL, Palmatier MI, Liu X, Chaudhri N, Caggiula AR, Donny EC, Sved AF (2006) The reinforcement enhancing effect of nicotine depends on the incentive value of a nonpharmacological reinforcer. The 12th annual meeting of the Society for Research on Nicotine and Tobacco, Orlando, FL, February 15–18, 2006

  • Olausson P, Jentsch JD, Taylor JR (2004a) Nicotine enhances responding with conditioned reinforcement. Psychopharmacology (Berl) 171:173–178

    Article  CAS  Google Scholar 

  • Olausson P, Jentsch JD, Taylor JR (2004b) Repeated nicotine exposure enhances responding with conditioned reinforcement. Psychopharmacology (Berl) 173:98–104

    Article  CAS  Google Scholar 

  • Palmatier MI, Evans-Martin FF, Hoffman A, Caggiula AR, Chaudhri N, Donny E, Liu X, Booth S, Gharib MA, Craven LA, Sved AF (2006) Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology (Berl) 184:391–400

    Article  CAS  Google Scholar 

  • Paterson NE, Froestl W, Markou A (2005) Repeated administration of the GABAB receptor agonist CGP44532 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine-seeking in rats. Neuropsychopharmacology 30:119–128

    Article  PubMed  CAS  Google Scholar 

  • Perkins KA, Gerlach D, Vender J, Grobe J, Meeker J, Hutchison S (2001) Sex differences in the subjective and reinforcing effects of visual and olfactory cigarette smoke stimuli. Nicotine Tob Res 3:141–150

    Article  PubMed  CAS  Google Scholar 

  • Pidoplichko VI, Noguchi J, Areola OO, Liang Y, Peterson J, Zhang T, Dani JA (2004) Nicotinic cholinergic synaptic mechanisms in the ventral tegmental area contribute to nicotine addiction. Learn Mem 11:60–69

    Article  PubMed  Google Scholar 

  • Reid MS, Mickalian JD, Delucchi KL, Berger SP (1999) A nicotine antagonist, mecamylamine, reduces cue-induced cocaine craving in cocaine-dependent subjects. Neuropsychopharmacology 20:297–307

    Article  PubMed  CAS  Google Scholar 

  • Rice ME, Cragg SJ (2004) Nicotine amplifies reward-related dopamine signals in striatum. Nat Neurosci 7:583–584

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW (1978) The acquisition of responding with conditioned reinforcement: effects of pipradrol, methylphenidate, d-amphetamine, and nomifensine. Psychopharmacology (Berl) 58:79–87

    Article  CAS  Google Scholar 

  • Robbins TW, Koob GF (1978) Pipradrol enhances reinforcing properties of stimuli paired with brain stimulation. Pharmacol Biochem Behav 8:219–222

    Article  PubMed  CAS  Google Scholar 

  • Rose JE (2005) Nicotine and nonnicotine factors in cigarette addiction. Psychopharmacology (Berl):1–12

  • Rose JE, Levin ED (1991) Inter-relationships between conditioned and primary reinforcement in the maintenance of cigarette smoking. Br J Addict 86:605–609

    Article  PubMed  CAS  Google Scholar 

  • Stafford D, LeSage MG, Glowa JR (1998) Progressive-ratio schedules of drug delivery in the analysis of drug self-administration: a review. Psychopharmacology (Berl) 139(3):169–184

    Article  CAS  Google Scholar 

  • Stewart J (1960) Reinforcing effects of light as a function of intensity and reinforcement schedule. J Comp Physiol Psychol 53:187–193

    Article  PubMed  CAS  Google Scholar 

  • Taylor JR, Robbins TW (1984) Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology (Berl) 84:405–412

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Peter Olausson for his thoughtful advice about the conditioning procedures used in this experiment. “Principles of laboratory animal care” (NIH No. 85-23, revised 1985) were followed throughout all experiments. The University of Pittsburgh Institutional Animal Care and Use Committee, Assurance Number A3187-01 approved this research. Preparation of this review was supported by National Institute on Drug Abuse research grants DA-10464 and DA-12655 and by a Howard Hughes Predoctoral Research Fellowship awarded to N. Chaudhri.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Chaudhri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhri, N., Caggiula, A.R., Donny, E.C. et al. Operant responding for conditioned and unconditioned reinforcers in rats is differentially enhanced by the primary reinforcing and reinforcement-enhancing effects of nicotine. Psychopharmacology 189, 27–36 (2006). https://doi.org/10.1007/s00213-006-0522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0522-0

Keywords

Navigation