Skip to main content

Advertisement

Log in

Modulation of memory and visuospatial processes by biperiden and rivastigmine in elderly healthy subjects

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The central cholinergic system is implicated in cognitive functioning. The dysfunction of this system is expressed in many diseases like Alzheimer's disease, dementia of Lewy body, Parkinson's disease and vascular dementia. In recent animal studies, it was found that selective cholinergic modulation affects visuospatial processes even more than memory function.

Objective

In the current study, we tried to replicate those findings. In order to investigate the acute effects of cholinergic drugs on memory and visuospatial functions, a selective anticholinergic drug, biperiden, was compared to a selective acetylcholinesterase-inhibiting drug, rivastigmine, in healthy elderly subjects.

Methods

A double-blind, placebo-controlled, randomised, cross-over study was performed in 16 healthy, elderly volunteers (eight men, eight women; mean age 66.1, SD 4.46 years). All subjects received biperiden (2 mg), rivastigmine (3 mg) and placebo with an interval of 7 days between them. Testing took place 1 h after drug intake (which was around T max for both drugs). Subjects were presented with tests for episodic memory (wordlist and picture memory), working memory tasks (N-back, symbol recall) and motor learning (maze task, pursuit rotor). Visuospatial abilities were assessed by tests with high visual scanning components (tangled lines and Symbol Digit Substitution Test).

Results

Episodic memory was impaired by biperiden. Rivastigmine impaired recognition parts of the episodic memory performance. Working memory was non-significantly impaired by biperiden and not affected by rivastigmine. Motor learning as well as visuospatial processes were impaired by biperiden and improved by rivastigmine.

Conclusions

These results implicate acetylcholine as a modulator not only of memory but also of visuospatial abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ammons RB (1947) Acquisition of motor skill. 2. Rotary pursuit performance with continuous practice before and after a single rest. J Exp Psychol 37:393–411

    Article  Google Scholar 

  • Atri A, Sherman S, Norman KA, Kirchhoff BA, Nicolas MM, Greicius MD, Cramer SC, Breiter HC, Hasselmo ME, Stern CE (2004) Blockade of central cholinergic receptors impairs new learning and increases proactive interference in a word paired-associate memory task. Behav Neurosci 118:223–236

    Article  PubMed  CAS  Google Scholar 

  • Baxter MG, Gallagher M (1996) Intact spatial learning in both young and aged rats following selective removal of hippocampal cholinergic input. Behav Neurosci 110:460–467

    Article  PubMed  CAS  Google Scholar 

  • Baxter MG, Bucci DJ, Wiley RG, Gorman LK, Gallagher M (1995) Selective immunotoxic lesions of basal forebrain cholinergic cells—effects on learning and memory in rats. Behav Neurosci 109:714–722

    Article  PubMed  CAS  Google Scholar 

  • Bentley P, Vuilleumier P, Thiel CM, Driver J, Dolan RJ (2003) Effects of attention and emotion on repetition priming and their modulation by cholinergic enhancement. J Neurophysiol 90:1171–1181

    Article  PubMed  CAS  Google Scholar 

  • Bentley P, Husain M, Dolan RJ (2004) Effects of cholinergic enhancement on visual stimulation, spatial attention, and spatial working memory. Neuron 41:969–982

    Article  PubMed  CAS  Google Scholar 

  • Birks J, Grimley Evans J, Iakovidou V, Tsolaki M (2003) Rivastigmine for Alzheimer's disease (Cochrane Review). In: The Cochrane Library, Issue 3

  • Bittner AC, Carter RC, Krause M, Kennedy RS, Harbeson MM (1983) Performance Evaluation Tests for Environmental Research (Peter)—Moran and computer batteries. Aviat Space Environ Med 54:923–928

    PubMed  Google Scholar 

  • Bittner AC, Carter RC, Kennedy RS, Harbeson MM, Krause M (1986) Performance Evaluation Tests for Environmental Research (Peter)—evaluation of 114 measures. Percept Mot Skills 63:683–708

    PubMed  Google Scholar 

  • Blokland A (1995) Acetylcholine: a neurotransmitter for learning and memory? Brain Res Rev 21:285–300

    Article  PubMed  CAS  Google Scholar 

  • Bond A, Lader M (1974) Use of analog scales in rating subjective feelings. Br J Med Psychol 47:211–218

    Google Scholar 

  • Bouma A, Mulder J, Lindeboom J (1998) Neuropsychologische diagnostiek, handboek. Zwets & Zeitlinger, Lisse

    Google Scholar 

  • Bridgeman B (2000) Interactions between vision for perception and vision for behavior. In: Rossetti Y, Revonsuo A (eds) Beyond dissociation: interaction between dissociated implicit and explicit processing. John Benjamins, Amsterdam, pp 17–40

    Google Scholar 

  • Buffett-Jerrott SE, Stewart SH (2002) Cognitive and sedative effects of benzodiazepine use. Curr Pharm Des 8:45–58

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Heath I, Hendrix JC, Shannon HE (1993) Comparative behavioral and neurochemical activities of cholinergic antagonists in rats. J Pharmacol Exp Ther 267:16–24

    PubMed  CAS  Google Scholar 

  • Cohen J, Braver TS, Brown JW (2002) Computational perspectives on dopamine function in prefrontal cortex—commentary. Curr Opin Neurobiol 12:223–229

    Article  PubMed  CAS  Google Scholar 

  • Corey-Bloom J (2002) The ABC of Alzheimer's disease: cognitive changes and their management in Alzheimer's disease and related dementias. Int Psychogeriatr 14:51–75

    Article  PubMed  Google Scholar 

  • Curran HV, Schifano F, Lader M (1991) Models of memory dysfunction—a comparison of the effects of scopolamine and lorazepam on memory, psychomotor performance and mood. Psychopharmacology 103:83–90

    Article  PubMed  CAS  Google Scholar 

  • de Jong WP, Hulstijn W, Jogems-Kosterman BJM, Smits-Engelsman BCM (1996) OASIS software and its application in experimental handwriting research. In: Simmers ML, Leedham CG, Thomassen AJWM (eds) Handwriting and drawing research: basic and applied issues. IOS, Amsterdam

    Google Scholar 

  • De Rosa E, Hasselmo ME, Baxter MG (2001) Contribution of the cholinergic basal forebrain to proactive interference from stored odor memories during associative learning in rats. Behav Neurosci 115:314–327

    Article  PubMed  Google Scholar 

  • Dunnett SB, Everitt BJ, Robbins TW (1991) The basal forebrain cortical cholinergic system—interpreting the functional consequences of excitotoxic lesions. Trends Neurosci 14:494–501

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM, Choppin A, Watson N (2001) Therapeutic, opportunities from muscarinic receptor research. Trends Pharmacol Sci 22:409–414

    Article  PubMed  CAS  Google Scholar 

  • Ekstrom RB, French JW, Harmon H, Dermen D (1976) Manual for the kit of factor referenced cognitive tests. Educational Testing Service, Princeton, NY

    Google Scholar 

  • Enz A, Amstutz R, Boddeke H, Gmelin G, Malanowski J (1993) Brain selective inhibition of acetylcholinesterase—a novel approach to therapy for Alzheimer's disease. Prog Brain Res 98:431–438

    Article  PubMed  CAS  Google Scholar 

  • Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Annu Rev Psychol 48:649–684

    Article  PubMed  CAS  Google Scholar 

  • Fibiger HC (1991) Cholinergic mechanisms in learning, memory and dementia—a review of recent-evidence. Trends Neurosci 14:220–223

    Article  PubMed  CAS  Google Scholar 

  • Flood JF, Cherkin A (1986) Scopolamine effects on memory retention in mice—a model of dementia. Behav Neural Biol 45:169–184

    Article  PubMed  CAS  Google Scholar 

  • French JW (1954) Manual for kit of selected tests for reference aptitude and achievement factors. Educational Testing Service, Princeton, NY

    Google Scholar 

  • Gold PE (2003) Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 80:194–210

    Article  PubMed  CAS  Google Scholar 

  • Guthrie SK, Manzey L, Scott D, Giordani B, Tandon R (2000) Comparison of central and peripheral pharmacologic effects of biperiden and trihexyphenidyl in human volunteers. J Clin Psychopharmacol 20:77–83

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez H, Gutierrez R, Silva-Gandarias R, Estrada J, Miranda MI, Bermudez-Rattoni F (1999) Differential effects of 192IgG-saporin and NMDA-induced lesions into the basal forebrain on cholinergic activity and taste aversion memory formation. Brain Res 834:136–141

    Article  PubMed  CAS  Google Scholar 

  • Hammond EJ, Meador KJ, Aungdin R, Wilder BJ (1987) Cholinergic modulation of human P3 event-related potentials. Neurology 37:346–350

    PubMed  CAS  Google Scholar 

  • Hege SG, Ellinwood EH Jr, Wilson WH, Helligers CA, Graham SM (1997) Psychomotor effects of the anxiolytic abecarnil: a comparison with lorazepam. Psychopharmacology (Berl) 131:101–107

    Article  CAS  Google Scholar 

  • Hollmann M, Muller-Peltzer H, Greger G, Brode E, Perucca E, Grimaldi R (1987) Pharmacokinetic-dynamic study on different oral biperiden formulations in volunteers. Pharmacopsychiatry 20:72–77

    PubMed  CAS  Google Scholar 

  • Jann MW, Shirley KL, Small GW (2002) Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet 41:719–739

    Article  PubMed  CAS  Google Scholar 

  • Jogems-Kosterman BJM, Zitman FG, van Hoof JJM, Hulstijn W (2001) Psychomotor slowing and planning deficits in schizophrenia. Schizophr Res 48:317–333

    Article  PubMed  CAS  Google Scholar 

  • Jones CK, Shannon HE (2000) Muscarinic cholinergic modulation of prepulse inhibition of the acoustic startle reflex. J Pharmacol Exp Ther 294:1017–1023

    PubMed  CAS  Google Scholar 

  • Kaplan E, Fein D, Morris R, Delis D (1991) Wais-R as a neuropsychological instrument. The Psychological Corporation, San Antonio, TX

    Google Scholar 

  • Kikuchi M, Wada Y, Nanbu Y, Nakajima A, Tachibana H, Takeda T, Hashimoto T (1999) EEG changes following scopolamine administration in healthy subjects—quantitative analysis during rest and photic stimulation. Neuropsychobiology 39:219–226

    Article  PubMed  CAS  Google Scholar 

  • Kirrane RM, Mitropoulou V, Nunn M, Silverman J, Siever LJ (2001) Physostigmine and cognition in schizotypal personality disorder. Schizophr Res 48:1–5

    Article  PubMed  CAS  Google Scholar 

  • Knoblich G, Kircher TTJ (2004) Deceiving oneself about being in control: conscious detection of changes in visuomotor coupling. J Exp Psychol Hum Percept Perform 30:657–666

    Article  PubMed  Google Scholar 

  • Kopelman MD, Corn TH (1988) Cholinergic blockade as a model for cholinergic depletion—a comparison of the memory deficits with those of Alzheimer-type dementia and the alcoholic Korsakoff syndrome. Brain 111:1079–1110

    Article  PubMed  Google Scholar 

  • Lezak MD (1995) Neuropsychological assessment, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Lucas-Meunier E, Fossier P, Baux G, Amar M (2003) Cholinergic modulation of the cortical neuronal network. Pflugers Arch 446:17–29

    PubMed  CAS  Google Scholar 

  • Mash DC, Flynn DD, Potter LT (1985) Loss of M2 muscarine receptors in the cerebral-cortex in Alzheimer's disease and experimental cholinergic denervation. Science 228:1115–1117

    Article  PubMed  CAS  Google Scholar 

  • Meador KJ, Moore EE, Nichols ME, Abney OL, Taylor HS, Zamrini EY, Loring DW (1993) The role of cholinergic systems in visuospatial processing and memory. J Clin Exp Neuropsychol 15:832–842

    Article  PubMed  CAS  Google Scholar 

  • Mewaldt SP, Ghoneim MM (1979) Effects and interactions of scopolamine, physostigmine and methamphetamine on human memory. Pharmacol Biochem Behav 10:205–210

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Poline JB, Kohn PD, Holt JL, Egan MF, Weinberger DR, Berman KF (2001) Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatry 158:1809–1817

    Article  PubMed  CAS  Google Scholar 

  • Mintzer MZ, Griffiths RR (2003) Lorazepam and scopolamine: a single-dose comparison of effects on human memory and attentional processes. Exp Clin Psychopharmacol 11:56–72

    Article  PubMed  CAS  Google Scholar 

  • Muir JL (1997) Acetylcholine, aging, and Alzheimer's disease. Pharmacol Biochem Behav 56:687–696

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A, Nilsson-Hakansson L, Adem A, Lai Z, Winblad B (1989) Multiple actions of THA on cholinergic neurotransmission in Alzheimer brains. Prog Clin Biol Res 317:1169–1178

    PubMed  CAS  Google Scholar 

  • Peretti CS, Danion JM, Kauffmannmuller F, Grange D, Patat A, Rosenzweig P (1997) Effects of haloperidol and amisulpride on motor and cognitive skill learning in healthy volunteers. Psychopharmacology 131:329–338

    Article  PubMed  CAS  Google Scholar 

  • Petrides M, Milner B (1982) Deficits on subject-ordered tasks after frontal-lobe and temporal-lobe lesions in man. Neuropsychologia 20:249–262

    Article  PubMed  CAS  Google Scholar 

  • Poirier J (2002) Evidence that the clinical effects of cholinesterase inhibitors are related to potency and targeting of action. Int J Clin Pract 127:6–19

    CAS  Google Scholar 

  • Power AE, Vazdarjanova A, McGaugh JL (2003) Muscarinic cholinergic influences in memory consolidation. Neurobiol Learn Mem 80:178–193

    Article  PubMed  CAS  Google Scholar 

  • Rammsayer TH, Rodewald S, Groh D (2000) Dopamine-antagonistic, anticholinergic, and GABAergic effects on declarative and procedural memory functions. Brain Res Cogn Brain Res 9:61–71

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, McAlonan G, Muir JL, Everitt BJ (1997a) Cognitive enhancers in theory and practice: studies of the cholinergic hypothesis of cognitive deficits in Alzheimer's disease. Behav Brain Res 83:15–23

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Semple J, Kumar R, Truman MI, Shorter J, Ferraro A, Fox B, Mckay G, Matthews K (1997b) Effects of scopolamine on delayed-matching-to-sample and paired associates tests of visual memory and learning in human subjects: comparison with diazepam and implications for dementia. Psychopharmacology 134:95–106

    Article  PubMed  CAS  Google Scholar 

  • Sabbe B, Hulstijn W, van Hoof J, Tuynman-Qua HG, Zitman F (1999) Retardation in depression: assessment by means of simple motor tasks. J Affect Disord 55:39–44

    Article  PubMed  CAS  Google Scholar 

  • Sarter M, Bruno JP (1998a) Age-related changes in rodent cortical acetylcholine and cognition: main effects of age versus age as an intervening variable. Brain Res Rev 27:143–156

    Article  PubMed  CAS  Google Scholar 

  • Sarter M, Bruno JP (1998b) Cortical acetylcholine, reality distortion, schizophrenia, and Lewy body dementia: too much or too little cortical acetylcholine? Brain Cogn 38:297–316

    Article  PubMed  CAS  Google Scholar 

  • Sharma T, Hughes C, Aasen I, Kumari V (2004) A placebo-controlled double-blind investigation of cognitive effects of rivastigmine in schizophrenia. Biol Psychiatry 55:27S

    Google Scholar 

  • Siegel D (1990) A multivariate study of pursuit rotor skill development. Res Q Exerc Sport 61:201–205

    PubMed  CAS  Google Scholar 

  • Staubli U, Rogers G, Lynch G (1994) Facilitation of glutamate receptors enhances memory. Proc Natl Acad Sci U S A 91:777–781

    Article  PubMed  CAS  Google Scholar 

  • Thiel CM, Bentley P, Dolan RJ (2002) Effects of cholinergic enhancement on conditioning-related responses in human auditory cortex. Eur J Neurosci 16:2199–2206

    Article  PubMed  CAS  Google Scholar 

  • Torres EM, Perry TA, Blokland A, Wilkinson LS, Wiley RG, Lappi DA, Dunnett SB (1994) Behavioral, histochemical and biochemical consequences of selective immunolesions in discrete regions of the basal forebrain cholinergic system. Neuroscience 63:95–122

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Engle DJ, Goodale MA, Mansfield RJ (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586

    Google Scholar 

  • Vakil E, Blachstein H (1993) Rey Auditory–Verbal Learning Test—structure-analysis. J Clin Psychol 49:883–890

    Article  PubMed  CAS  Google Scholar 

  • van Hoof JJM, Jogems-Kosterman BJM, Sabbe BGC, Zitman FG, Hulstijn W (1998) Differentiation of cognitive and motor slowing in the Digit Symbol Test (DST): differences between depression and schizophrenia. J Psychiatr Res 32:99–103

    Article  PubMed  Google Scholar 

  • van Mier H, Hulstijn W, Petersen SE (1993) Changes in motor planning during the acquisition of movement patterns in a continuous task. Acta Psychologica 82:291–312

    Article  PubMed  Google Scholar 

  • van Mier H, Tempel LW, Perlmutter JS, Raichle ME, Petersen SE (1998) Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice. J Neurophysiol 80:2177–2199

    PubMed  Google Scholar 

  • Voytko ML (1996) Cognitive functions of the basal forebrain cholinergic system in monkeys: memory or attention? Behav Brain Res 75:13–25

    Article  PubMed  CAS  Google Scholar 

  • Voytko ML, Olton DS, Richardson RT, Gorman LK, Tobin JR, Price DL (1994) Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci 14:167–186

    PubMed  CAS  Google Scholar 

  • Wechsler D (1981) The psychometric tradition-developing the Wechsler Adult Intelligence Scale. Contemp Educ Psychol 6:82–85

    Article  Google Scholar 

  • Weinberger DR, Mattay V, Callicott J, Kotrla K, Santha A, van Gelderen P, Duyn J, Moonen C, Frank J (1996) fMRI applications in schizophrenia research. Neuroimage 4:S118–S126

    Article  PubMed  CAS  Google Scholar 

  • Wenk GL, Stoehr JD, Quintana G, Mobley S, Wiley RG (1994) Behavioral, biochemical, histological, and electrophysiological effects of 192-Igg-saporin injections into the basal forebrain of rats. J Neurosci 14:5986–5995

    PubMed  CAS  Google Scholar 

  • Wezenberg E, Hulstijn W, Sabbe B, Ruigt GSF, Verkes RJ (2004) Psychomotor and cognitive effects of lorazepam and d-amphetamine in healthy subjects. Development of sensitive screening tests of psychomotor- and cognitive functions. Eur Neuropsychopharmacol 14:S362

    Article  Google Scholar 

  • Wild R, Petit T (2004) Cholinesterase inhibitors for dementia with Lewy bodies (Cochrane Review). In: The Cochrane Library

  • Witte EA, Davidson MC, Marrocco RT (1997) Effects of altering brain cholinergic activity on covert orienting of attention: comparison of monkey and human performance. Psychopharmacology 132:324–334

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by NV Organon. We would like to thank them for their financial and technical support to perform this study.

We would also like to thank Jan Leijtens and Drs. Sevla Cinar for their helpful assistance in data collection and analysis.

This experiment complies with the current laws of the Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Wezenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wezenberg, E., Verkes, R.J., Sabbe, B.G.C. et al. Modulation of memory and visuospatial processes by biperiden and rivastigmine in elderly healthy subjects. Psychopharmacology 181, 582–594 (2005). https://doi.org/10.1007/s00213-005-0083-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0083-7

Keywords

Navigation