Skip to main content
Log in

Extremal and optimal properties of B-bases collocation matrices

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Totally positive matrices are related with the shape preserving representations of a space of functions. The normalized B-basis of the space has optimal shape preserving properties. Bernstein polynomials, B-splines and rational Bernstein bases are examples of normalized B-bases. It is proven that the minimal eigenvalue and singular value of a collocation matrix of a normalized B-basis is bounded below by the minimal eigenvalue and singular value of the corresponding collocation matrix of any normalized totally positive basis of the same space. The optimal conditioning for the \(\infty \)-norm of a collocation matrix of a normalized B-basis among all the normalized totally positive bases of a space of functions is also shown. Numerical examples confirm the theoretical results and answer related questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando, T.: Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carnicer, J.M., Peña, J.M.: Shape preserving representations and optimality of the Bernstein basis. Adv. Comput. Math. 1, 173–196 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carnicer, J.M., Peña, J.M.: Totally positive bases for shape preserving curve design and optimality of B-splines. Comput. Aided Geom. Des. 11, 633–654 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carnicer, J.M., Peña, J.M.: Total positivity and optimal bases. In: Gasca, M., Micchelli, C.A. (eds.) Total Positivity and Its Applications, pp. 133–155. Kluwer Academic Press, Dordrecht (1996)

    Chapter  MATH  Google Scholar 

  5. de Boor, C.: A Practical Guide to Splines. Springer, New York (1978)

    Book  MATH  Google Scholar 

  6. Delgado, J., Peña, J.M.: A shape preserving representation with an evaluation algorithm of linear complexity. Comput. Aided Geom. Des. 20, 1–10 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Delgado, J., Peña, J.M.: On the generalized Ball bases. Adv. Comput. Math. 24, 263–280 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Delgado, J., Peña, J.M.: Optimal conditioning of Bernstein collocation matrices. SIAM J. Matrix Anal. Appl. 31, 990–996 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Delgado, J., Peña, J.M.: Accurate computations with collocation matrices of q-Bernstein polynomials. SIAM J. Matrix Anal. Appl. 36, 880–893 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Demmel, J., Koev, P.: The accurate and efficient solution of a totally positive generalized Vandermonde linear system. SIAM J. Matrix Anal. Appl. 27, 142–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fallat, S.M., Johnson, C.R.: Totally Nonnegative Matrices. Princeton University Press, Princeton (2011)

    Book  MATH  Google Scholar 

  12. Farouki, R.T., Rajan, V.T.: On the numerical condition of polynomials in Bernstein form. Comput. Aided Geom. Des. 4, 191–216 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gasca, M., Micchelli, C.A.: Total Positivity and Its Applications. Kluwer Academic, Dordrecht (1996)

    Book  MATH  Google Scholar 

  14. Gasca, M., Peña, J.M.: On factorizations of totally positive matrices. In: Gasca, M., Micchelli, C.A. (eds.) Total Positivity and Its Applications, pp. 109–130. Kluwer Academic Press, Dordrecht (1996)

    Chapter  Google Scholar 

  15. Han, X.: Normalized B-basis of the space of trigonometric polynomials and curve design. Appl. Math. Comput. 251, 336–348 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Karlin, S.: Total Positivity. Stanford University Press, Stanford (1968)

    MATH  Google Scholar 

  17. Koev, P.: Accurate computations with totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 29, 731–751 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Koev, P.: Accurate eigenvalues and exact zero Jordan blocks of totally nonnegative matrices. Numer. Math. https://doi.org/10.1007/s00211-019-01022-0

  19. Mainar, E., Peña, J.M., Sánchez-Reyes, J.: Shape preserving alternatives to the rational Bézier mode. Comput. Aided Geom. Des. 18, 37–60 (2001)

    Article  MATH  Google Scholar 

  20. Marco, A., Martínez, J.J.: A fast and accurate algorithm for solving Bernstein–Vandermonde linear systems. Linear Algebra Appl. 422, 616–628 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Minc, H.: Nonnegative Matrices. Wiley Interscience, New York (1988)

    MATH  Google Scholar 

  22. Peña, J.M.: Shape preserving representations for trigonometric polynomial curves. Comput. Aided Geom. Des. 14, 5–11 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peña, J.M.: Bases with optimal shape preserving properties. In: Peña, J.M. (ed.) Shape Preserving Representations in Computer Aided-Geometric Design, pp. 63–84. Nova Science, Newark (1999)

    MATH  Google Scholar 

  24. Pinkus, A.: Totally Positive Matrices, Cambridge Tracts in Mathematics, vol. 181. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  25. Sánchez-Reyes, J.: Harmonic rational Bézier curves, p-Bézier curves and trigonometric polynomials. Comput. Aided Geom. Des. 15, 909–923 (1998)

    Article  MATH  Google Scholar 

  26. Schumaker, L.L.: Spline Functions: Basic Theory. Wiley, New York (1981)

    MATH  Google Scholar 

  27. Zhang, J.: C-curves: an extension of cubic curves. Comput. Aided Geom. Des. 13, 199–217 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Delgado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially funded by the Spanish research Grant PGC2018-096321-B-I00 (MCIU/AEI), by Gobierno de Aragón (E41-17R) and Feder 2014-2020 “Construyendo Europa desde Aragón”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado, J., Peña, J.M. Extremal and optimal properties of B-bases collocation matrices. Numer. Math. 146, 105–118 (2020). https://doi.org/10.1007/s00211-020-01135-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01135-x

Mathematics Subject Classification

Navigation