Skip to main content

Advertisement

Log in

Convergence analysis of penalty based numerical methods for constrained inequality problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper presents a general convergence theory of penalty based numerical methods for elliptic constrained inequality problems, including variational inequalities, hemivariational inequalities, and variational–hemivariational inequalities. The constraint is relaxed by a penalty formulation and is re-stored as the penalty parameter tends to zero. The main theoretical result of the paper is the convergence of the penalty based numerical solutions to the solution of the constrained inequality problem as the mesh-size and the penalty parameter approach zero independently. The convergence of the penalty based numerical methods is first established for a general elliptic variational–hemivariational inequality with constraints, and then for hemivariational inequalities and variational inequalities as special cases. Applications to problems in contact mechanics are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework, 3rd edn. Springer, New York (2009)

    MATH  Google Scholar 

  2. Chernov, M., Maischak, A., Stephan, E.: A priori error estimates for hp penalty bem for contact problems in elasticity. Comput. Methods Appl. Mech. Eng. 196, 3871–3880 (2007)

    Article  MathSciNet  Google Scholar 

  3. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  4. Chouly, F., Hild, P.: On convergence of the penalty method for unilateral contact problems. Appl. Numer. Math. 65, 27–48 (2013)

    Article  MathSciNet  Google Scholar 

  5. Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Theory. Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York (2003)

    Book  Google Scholar 

  6. Eck, C., Jarušek, J.: Existence results for the static contact problem with Coulomb friction. Math. Mod. Methods Appl. 8, 445–463 (1988)

    Article  MathSciNet  Google Scholar 

  7. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  8. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. Springer, Berlin (1986)

    Book  Google Scholar 

  9. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)

    Book  Google Scholar 

  10. Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  11. Gwinner, J., Stephan, E.: Advanced Boundary Element Methods: Treatment of Boundary Value, Transmission and Contact Problems. Springer, New York (2018)

    Book  Google Scholar 

  12. Han, W.: Numerical analysis of stationary variational–hemivariational inequalities with applications in contact mechanics. Math. Mech. Solids 23, 279–293 (2018)

    Article  MathSciNet  Google Scholar 

  13. Han, W., Migórski, S., Sofonea, M.: A class of variational–hemivariational inequalities with applications to frictional contact problems. SIAM J. Math. Anal. 46, 3891–3912 (2014)

    Article  MathSciNet  Google Scholar 

  14. Han, W., Migórski, S., Sofonea, M.: On a penalty based numerical method for unilateral contact problems with non-monotone boundary condition. J. Comput. Appl. Math. 356, 293–301 (2019)

    Article  MathSciNet  Google Scholar 

  15. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics, vol. 30. Americal Mathematical Society, RI-International Press, Providence, Somerville (2002)

    Book  Google Scholar 

  16. Han, W., Sofonea, M., Barboteu, M.: Numerical analysis of elliptic hemivariational inequalities. SIAM J. Numer. Anal. 55, 640–663 (2017)

    Article  MathSciNet  Google Scholar 

  17. Han, W., Sofonea, M., Danan, D.: Numerical analysis of stationary variational–hemivariational inequalities. Numer. Math. 139, 563–592 (2018)

    Article  MathSciNet  Google Scholar 

  18. Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Method for Hemivariational Inequalities. Theory, Methods and Applications. Kluwer Academic Publishers, Boston (1999)

    Book  Google Scholar 

  19. Hild, P., Renard, Y.: An improved a priori error analysis for finite element approximations of Signorini’s problem. SIAM J. Numer. Anal. 50, 2400–2419 (2012)

    Article  MathSciNet  Google Scholar 

  20. Hlaváček, I., Lovíšek, J.: A finite element analysis for the Signorini problem in plane elastostatics. Apl. Mat. 22, 215–227 (1977)

    MathSciNet  MATH  Google Scholar 

  21. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988)

    Book  Google Scholar 

  22. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, vol. 26. Springer, New York (2013)

    MATH  Google Scholar 

  23. Migórski, S., Ochal, A., Sofonea, M.: A class of variational-hemivariational inequalities in reflexive Banach spaces. J. Elast. 127, 151–178 (2017)

    Article  MathSciNet  Google Scholar 

  24. Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker Inc, New York (1995)

    MATH  Google Scholar 

  25. Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer, Berlin (1993)

    Book  Google Scholar 

  26. Sofonea, M., Migórski, S.: Variational-Hemivariational Inequalities with Applications. Chapman & Hall, CRC Press, Boca Raton, London (2018)

    MATH  Google Scholar 

  27. Sofonea, M., Migórski, S., Han, W.: A penalty method for history-dependent variational–hemivariational inequalities. Comput. Math. Appl. 75, 2561–2573 (2018)

    Article  MathSciNet  Google Scholar 

  28. Sofonea, M., Pătrulescu, F.: Penalization of history-dependent variational inequalities. Eur. J. Appl. Math. 25, 155–176 (2014)

    Article  MathSciNet  Google Scholar 

  29. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear Monotone Operators. Springer, New York (1990)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by NSF under the Grant DMS-1521684, and the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. 823731 CONMECH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Sofonea, M. Convergence analysis of penalty based numerical methods for constrained inequality problems. Numer. Math. 142, 917–940 (2019). https://doi.org/10.1007/s00211-019-01036-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01036-8

Mathematics Subject Classification

Navigation