Skip to main content
Log in

A Levenberg–Marquardt method for large nonlinear least-squares problems with dynamic accuracy in functions and gradients

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we consider large scale nonlinear least-squares problems for which function and gradient are evaluated with dynamic accuracy and propose a Levenberg–Marquardt method for solving such problems. More precisely, we consider the case in which the exact function to optimize is not available or its evaluation is computationally demanding, but approximations of it are available at any prescribed accuracy level. The proposed method relies on a control of the accuracy level, and imposes an improvement of function approximations when the accuracy is detected to be too low to proceed with the optimization process. We prove global and local convergence and complexity of our procedure and show encouraging numerical results on test problems arising in data assimilation and machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anderson, T.W., Darling, D.A.: A test of goodness of fit. J. Am. Stat. Assoc. 49(268), 765–769 (1954)

    Article  Google Scholar 

  2. Bandeira, A.S., Scheinberg, K., Vicente, L.N.: Convergence of trust-region methods based on probabilistic models. SIAM J. Opt. 24(3), 1238–1264 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bellavia, S., Morini, B., Riccietti, E.: On an adaptive regularization for ill-posed nonlinear systems and its trust-region implementation. Comput. Opt. Appl. 64(1), 1–30 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bellavia, S., Riccietti E.: On an elliptical trust-region procedure for Ill-posed nonlinear least-squares problems. J. Optim. Theor. Appl. (2018). https://doi.org/10.1007/s10957-018-1318-1

    Article  MathSciNet  Google Scholar 

  5. Bergou, E., Gratton, S., Vicente, L.: Levenberg-marquardt methods based on probabilistic gradient models and inexact subproblem solution, with application to data assimilation. SIAM/ASA J. Uncertain. Quantif. 4(1), 924–951 (2016)

    Article  MathSciNet  Google Scholar 

  6. Blanchet, J., Cartis, C., Menickelly, M., Scheinberg, K.: Convergence rate analysis of a stochastic trust region method for nonconvex optimization (2016) arXiv preprint arXiv:1609.07428

  7. Bollapragada, R., Byrd, R., Nocedal, J.: Exact and inexact subsampled Newton methods for optimization (2016) arXiv preprint arXiv:1609.08502

  8. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning (2016) arXiv preprint arXiv:1606.04838

  9. Causality Workbench Team. A Marketing Dataset. http://www.causality.inf.ethz.ch/data/CINA.html (2008). Accessed 23 Jan 2017

  10. Chen, R., Menickelly, M., Scheinberg, K.: Stochastic optimization using a trust-region method and random models. Math. Program. 144, 1–41 (2015)

    MATH  Google Scholar 

  11. Conn, A.R., Gould, N.I., Toint, P.L.: Trust Region Methods, vol. 1. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  12. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. SIAM, Philadelphia (2009)

    Book  Google Scholar 

  13. Courtier, P., Thépaut, J.N., Hollingsworth, A.: A strategy for operational implementation of 4d-var, using an incremental approach. Quart. J. R. Meteorol. Soc. 120(519), 1367–1387 (1994)

    Article  Google Scholar 

  14. Friedlander, M.P., Schmidt, M.: Hybrid deterministic-stochastic methods for data fitting. SIAM J. Sci. Comput. 34(3), A1380–A1405 (2012)

    Article  MathSciNet  Google Scholar 

  15. Gratton, S., Gürol, S., Toint, P.: Preconditioning and globalizing conjugate gradients in dual space for quadratically penalized nonlinear-least squares problems. Comput. Opt. Appl. 54(1), 1–25 (2013)

    Article  MathSciNet  Google Scholar 

  16. Gratton, S., Rincon-Camacho, M., Simon, E., Toint, P.L.: Observation thinning in data assimilation computations. EURO J. Comput. Opt. 3(1), 31–51 (2015)

    Article  MathSciNet  Google Scholar 

  17. Hanke, M.: A regularizing Levenberg–Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Probl. 13(1), 79 (1997)

    Article  MathSciNet  Google Scholar 

  18. Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems, vol. 6. Walter de Gruyter, Berlin (2008)

    Book  Google Scholar 

  19. Kelley, C.T.: Iterative Methods for Optimization: Matlab Codes. http://www4.ncsu.edu/~ctk/matlab_darts.html. Accessed 12 Mar 2017

  20. Krejić, N., Jerinkić, N.K.: Nonmonotone line search methods with variable sample size. Numer. Algorithms 68(4), 711–739 (2015)

    Article  MathSciNet  Google Scholar 

  21. Krejić, N., Martínez, J.: Inexact restoration approach for minimization with inexact evaluation of the objective function. Math. Comput. 85(300), 1775–1791 (2016)

    Article  MathSciNet  Google Scholar 

  22. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer, Berlin (2013)

    MATH  Google Scholar 

  23. Roosta-Khorasani, F., Mahoney, M.W.: Sub-sampled Newton methods 1: globally convergent algorithms (2016) arXiv preprint arXiv:1601.04737

  24. Saunders, M.: Systems Optimization Laboratory. http://web.stanford.edu/group/SOL/software/cgls/. Accessed 15 Nov 2016

  25. Stephens, M.A.: Edf statistics for goodness of fit and some comparisons. J. Am. Stat. Assoc. 69(347), 730–737 (1974)

    Article  Google Scholar 

  26. Trémolet, Y.: Model-error estimation in 4d-var. Quart. J. R. Meteorol. Soc. 133(626), 1267–1280 (2007)

    Article  Google Scholar 

  27. Weaver, A., Vialard, J., Anderson, D.: Three-and four-dimensional variational assimilation with a general circulation model of the tropical pacific ocean. Part I: formulation, internal diagnostics, and consistency checks. Mon. Weather Rev. 131(7), 1360–1378 (2003)

    Article  Google Scholar 

  28. Wright, S., Nocedal, J.: Numerical optimization. Science 35, 67–68 (1999)

    MATH  Google Scholar 

  29. Zhao, R., Fan, J.: Global complexity bound of the Levenberg–Marquardt method. Opt. Methods Softw. 31(4), 805–814 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the authors of [16] for providing us the Matlab code for the data assimilation test problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Riccietti.

Additional information

Work partially supported by INdAM-GNCS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellavia, S., Gratton, S. & Riccietti, E. A Levenberg–Marquardt method for large nonlinear least-squares problems with dynamic accuracy in functions and gradients. Numer. Math. 140, 791–825 (2018). https://doi.org/10.1007/s00211-018-0977-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0977-z

Mathematics Subject Classification

Navigation