Skip to main content
Log in

Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We introduce a class of n×n structured matrices which includes three well-known classes of generalized companion matrices: tridiagonal plus rank-one matrices (comrade matrices), diagonal plus rank-one matrices and arrowhead matrices. Relying on the structure properties of , we show that if A then A=RQ, where A=QR is the QR decomposition of A. This allows one to implement the QR iteration for computing the eigenvalues and the eigenvectors of any A with O(n) arithmetic operations per iteration and with O(n) memory storage. This iteration, applied to generalized companion matrices, provides new O(n2) flops algorithms for computing polynomial zeros and for solving the associated (rational) secular equations. Numerical experiments confirm the effectiveness and the robustness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbenz, P., Golub, G.H.: QR-like algorithms for symmetric arrow matrices. SIAM J. Matrix Anal. Appl. 13(2), 655–658 (1992)

    Article  Google Scholar 

  2. Arbenz, P., Golub, G.H.: Matrix shapes invariant under the symmetric QR algorithm. Numer. Linear Algebra Appl. 2, 87–93 (1995)

    Google Scholar 

  3. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied Mathematics (SIAM), 2000

  4. Barnett, S.: A companion matrix analogue for orthogonal polynomials. Linear Algebra and Appl. 12(3), 197–208 (1975)

    Article  Google Scholar 

  5. Bini, D.A., Daddi, F., Gemignani, L.: On the shifted QR iteration applied to companion matrices, Electron. Trans. Numer. Anal. 18, 137–152 (2004)

    Google Scholar 

  6. Bini, D.A., Gemignani, L., Pan, V.Y.: Inverse power and Durand-Kerner iterations for univariate polynomial root-finding. Comput. Math. with Appl. 47, 447–459 (2004)

    Article  Google Scholar 

  7. Bini, D.A., Gemignani, L., Pan, V.Y.: Improved initialization of the accelerated and robust QR-like polynomial root-finding, Electron. Trans. Numer. Anal. 17, 195–205 (2004)

    Google Scholar 

  8. Bini, D.A., Gemignani, L., Pan, V.Y.: QR-like algorithms for generalized semiseparable matrices. Rapporto Tecnico n. 1470, Dipartimento di Matematica, Università di Pisa, 2003

  9. Bini, D., Gemignani, L.: Iteration schemes for the divide-and-conquer eigenvalue solver. Numer. Math. 67, 403–425 (1994)

    Article  Google Scholar 

  10. Bunch, J.R., Nielsen, C.P.: Updating the singular value decomposition. Numer. Math. 31, 111–129 (1978)

    Article  Google Scholar 

  11. Bunch, J.R., Nielsen, C.P., Sorensen, D.C.: Rank-one modification of the symmetric eigenproblem. Numer. Math. 31, 31–48 (1978)

    Article  Google Scholar 

  12. Calvetti, D., Kim, S., Reichel, L.: The restarted QR-algorithm for eigenvalue computation of structured matrices. J. Comput. Appl. Math. 149, 415–422 (2002)

    Article  Google Scholar 

  13. Carstensen, C.: Linear construction of companion matrices. Linear Algebra Appl. 149, 191–214 (1991)

    Article  Google Scholar 

  14. Chandrasekaran, S., Gu, M.: Fast and stable eigendecomposition of symmetric banded plus semiseparable matrices. Linear Algebra Appl. 313, 107–114 (2000)

    Article  Google Scholar 

  15. Chandrasekaran, S., Gu, M.: A fast and stable solver for recursively semi-separable systems of linear equations. In: Vadim Olshevsky (ed.), Structured Matrices in Mathematics, Computer, Science, and Engineering I, volume 281 of Contemporary Mathematics, American Mathematical Society (AMS), 2001, pp. 39–58

  16. Chandrasekaran, S., Dewilde, P., Gu, M., Pals, T., van der Veen, A.J.: Fast stable solvers for sequentially semi-separable linear systems of equations. Lecture Notes in Computer Science 2552, 545–554 (2002)

    Google Scholar 

  17. Cuppen, J.J.M.: A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math. 36, 177–195 (1980/81)

    Google Scholar 

  18. Delvaux, S., Van Barel, M.: Rank structures preserved by the QR-algorithm: the singular case. Technical Report TW400, Katholieke Universiteit Leuven, Department Computerwetenschappen, 2004

  19. Dewilde, P.: Systems of low Hankel rank: a survey. In: Vadim Olshevsky (ed.), Structured Matrices in Mathematics, Computer, Science, and Engineering I, volume 281 of Contemporary Mathematics, American Mathematical Society (AMS), 2001, pp. 91–102

  20. Dewilde, P., van der Veen, A.J.: Time-varying systems and computations. Kluwer Academic Publishers, Boston, MA, 1998

  21. Dongarra, J.J., Sorensen, D.C.: A fully parallel algorithm for the symmetric eigenvalue problem. SIAM J. Sci. Stat. Comput. 8, 139–154 (1987)

    Article  Google Scholar 

  22. Eidelman, Y., Gohberg, I:” Inversion formulas and linear complexity algorithm for diagonal plus semiseparable matrices. Comput. Math. Appl. 33, 69–79 (1997)

    Article  Google Scholar 

  23. Eidelman, Y., Gohberg, I.: On a new class of structured matrices. Integral Equations Operator Theory 34, 293–324 (1999)

    Article  Google Scholar 

  24. Eidelman, Y., Gohberg, I.: A modification of the Dewilde-van der Veen method for inversion of finite structured matrices. Linear Algebra Appl. 343–344, 419–450 (2002)

    Google Scholar 

  25. Eidelman, Y., Gohberg, I.: Fast inversion algorithms for a class of structured operator matrices. Linear Algebra Appl. 371, 153–190 (2003)

    Article  Google Scholar 

  26. Elsner, L.: A remark on simultaneous inclusions of the zeros of a polynomial by Gershgorin’s theorem. Numer. Math. 21, 425–427 (1973)

    Article  Google Scholar 

  27. Fadeeva, V.N.: Computational methods of Linear Algebra. Dover Publications, New York, NY, 1959

  28. Fasino, D., Gemignani, L.: Structural and computational properties of possibly singular semiseparable matrices. Linear Algebra Appl. 340, 183–198 (2002)

    Article  Google Scholar 

  29. Fasino, D., Mastronardi, N., Van Barel, M.: Fast and stable algorithms for reducing diagonal plus semiseparable matrices to tridiagonal and bidiagonal form. In: Vadim Olshevsky (ed.), Fast Algorithms for Structured Matrices: Theory and Applications, volume 323 of Contemporary Mathematics, American Mathematical Society (AMS), 2003, pp. 105–118

  30. Fiedler, M.: Expressing a polynomial as the characteristic polynomial of a symmetric matrix. Linear Algebra Appl. 141, 265–270 (1990)

    Article  Google Scholar 

  31. Fortune, S.: An iterated eigenvalue algorithm for approximating roots of univariate polynomials. J. Symbolic Comput. 33(5), 627–646 (2002)

    Article  Google Scholar 

  32. Fuhrmann, D.R.: An algorithm for subspace computation with applications in signal processing. SIAM J. Matrix Anal. Appl. 9, 213–220 (1988)

    Article  Google Scholar 

  33. Gander, W.: Least squares with a quadratic constraint. Numer. Math. 36, 291–307 (1981)

    Article  Google Scholar 

  34. Gander, W., Golub, G.H., von Matt, U.: A constrained eigenvalue problem. Linear Algebra Appl. 114–115, 815–839 (1989)

    Google Scholar 

  35. Gantmacher, F.P., Krein, M.G.: Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems. Translation based on the 1941 Russian original, Edited and with a preface by Alex Eremenko, AMS Chelsea Publishing, Providence, RI, 2002

  36. Gill, P.E., Golub, G.H., Murray, W., Saunders, M.A.: Methods for modifying matrix factorizations. Math. Comp. 28, 505–535 (1974)

    Google Scholar 

  37. Golub, G.H.: Some modified matrix eigenvalue problems. SIAM Rev. 15, 318–334 (1973)

    Article  Google Scholar 

  38. Golub, G.H., Van Loan, C.F.: Matrix Computations. John Hopkins University Press, 1996

  39. Golub, G.H., von Matt, U.: Quadratically constrained least squares and quadratic problems. Numer. Math. 59, 561–580 (1991)

    Article  Google Scholar 

  40. Gragg, W.B.: The QR algorithm for unitary Hessenberg matrices. J. Comput. Appl. Math. 16, 1–8 (1986)

    Article  Google Scholar 

  41. Koltracht, I.: Linear complexity algorithm for semiseparable matrices. Integral Equations Operator Theory 29(3), 313–319 (1997)

    Article  Google Scholar 

  42. Malek, F., Vaillancourt, R.: A composite polynomial zerofinding matrix algorithm. Comput. Math. Appl. 30(2), 37–47 (1995)

    Article  Google Scholar 

  43. Mastronardi, N., Van Barel, M., Vandebril, R.: On computing the eigenvectors of a class of structured matrices. In: Proceedings of the ICCAM 2004: Eleventh International Congress on Computational and Applied Mathematics, Katholieke Universiteit Leuven, Belgium, July, 2004

  44. Melman, A.: Numerical solution of a secular equation. Numer. Math. 69, 483–493 (1995)

    Article  Google Scholar 

  45. Melman, A.: A unifying convergence analysis of second-order methods for secular equations. Math. Comp. 66, 333–344 (1997)

    Article  Google Scholar 

  46. Moler, C.: Cleve’s Corner: ROOTS - Of polynomials, that is. The MathWorks Newsletter 5(1), 8–9 (1991)

    Google Scholar 

  47. O’Leary, D.P., Stewart, G.W.: Computing the eigenvalues and eigenvectors of symmetric arrowhead matrices. J. Comput. Phys. 90(2), 497–505 (1990)

    Article  Google Scholar 

  48. Parlett, B.N.: The symmetric eigenvalue problem. Society for Industrial and Applied Mathematics (SIAM), 1998

  49. Solomonoff, A.: Application of multipole methods to two matrix eigenproblems. Preprint no. 1181, November 1993, IMA - Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, USA

  50. Tyrtyshnikov, E.E.: Mosaic ranks for weakly semiseparable matrices. In: Large-scale scientific computations of engineering and environmental problems, II (Sozopol, 1999), volume 73 of Notes Numer. Fluid Mech. Vieweg, Braunschweig, 2000, pp. 36–41

  51. Uhlig, F.: General polynomial roots and their multiplicities in O(n) memory and O(n2) time. Linear and Multilinear Algebra 46(4), 327–359 (1999)

    Google Scholar 

  52. Uhlig, F.: The D Q R algorithm, basic theory, convergence, and conditional stability. Numer. Math. 76(4), 515–553 (1997)

    Article  Google Scholar 

  53. Van Barel, M., Fasino, D., Gemignani, L., Mastronardi, N.: Orthogonal rational functions. Technical Report TW350, Katholieke Universiteit Leuven, Department Computerwetenschappen, 2002. Submitted to SIAM J. Matrix Anal. Appl.

  54. Vandebril, R.: Semiseparable matrices and the symmetric eigenvalue problem. PhD Thesis, Katholieke Universiteit Leuven, Department Computerwetenschappen, 2004

  55. Vandebril, R., Van Barel, M., Mastronardi, N.: An orthogonal similarity reduction of a matrix to semiseparable form. Technical Report TW355, Katholieke Universiteit Leuven, Department Computerwetenschappen, 2003

  56. Vandebril, R., Van Barel, M., Mastronardi, N.: A note on the representation and definition of semiseparable matrices. Technical Report TW368, Katholieke Universiteit Leuven, Department Computerwetenschappen, 2003

  57. Vandebril, R., Van Barel, M., Mastronardi, N.: The Lanczos-Ritz values appearing in an orthogonal similarity reduction of a matrix into semiseparable form. Technical Report TW360, Katholieke Universiteit Leuven, Department Computerwetenschappen, 2003

  58. Vandebril, R., Van Barel, M., Mastronardi, N.: A QR-method for computing the singular values via semiseparable. Technical Report TW366, Katholieke Universiteit Leuven, Department Computerwetenschappen, 2003

  59. Watkins, D.S.: Fundamentals of matrix computations. Wiley-Interscience [John Wiley & Sons], New York, 2002

  60. Wilkinson, J.H.: The algebraic eigenvalue problem. Clarendon Press, Oxford, 1965

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario A. Bini.

Additional information

The results of this paper were presented at the Workshop on Nonlinear Approximations in Numerical Analysis, June 22 – 25, 2003, Moscow, Russia, at the Workshop on Operator Theory and Applications (IWOTA), June 24 – 27, 2003, Cagliari, Italy, at the Workshop on Numerical Linear Algebra at Universidad Carlos III in Leganes, June 16 – 17, 2003, Leganes, Spain, at the SIAM Conference on Applied Linear Algebra, July 15 – 19, 2003, Williamsburg, VA and in the Technical Report [8]. This work was partially supported by MIUR, grant number 2002014121, and by GNCS-INDAM. This work was supported by NSF Grant CCR 9732206 and PSC CUNY Awards 66406-0033 and 65393-0034.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bini, D., Gemignani, L. & Pan, V. Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations. Numer. Math. 100, 373–408 (2005). https://doi.org/10.1007/s00211-005-0595-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0595-4

Mathematics Subject Classification (2000)

Navigation