Skip to main content
Log in

Analysis of the advection-diffusion operator using fractional order norms

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

In this paper we obtain a family of optimal estimates for the linear advection-diffusion operator. More precisely we define norms on the domain of the operator, and norms on its image, such that it behaves as an isomorphism: it stays bounded as well as its inverse does, uniformly with respect to the diffusion parameter. The analysis makes use of the interpolation theory between function spaces. One motivation of the present work is our interest in the theoretical properties of stable numerical methods for this kind of problem: we will only give some hints here and we will take a deeper look in a further paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method. In: The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972), Academic Press, New York, 1972, pp. 1–359. With the collaboration of G. Fix and R. B. Kellogg.

  2. Baiocchi, C., Brezzi, F., Franca, L.P.: Virtual bubbles and Galerkin-least-squares type methods (Ga. L.S.). Comput. Methods Appl. Mech. Eng. 105(1), 125–141 (1993)

    Google Scholar 

  3. Bertoluzza, S., Canuto, C., Tabacco, A.: Stable discretizations of convection-diffusion problems via computable negative-order inner products. SIAM J. Numer. Anal. 38(3), 1034–1055 (electronic) (2000)

    Article  MATH  Google Scholar 

  4. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8(R-2), 129–151 (1974)

    Google Scholar 

  5. Brezzi, F.: Interacting with the subgrid world. In: Numerical analysis 1999 (Dundee), Chapman & Hall/CRC, Boca Raton, FL, 2000, pp. 69–82

  6. Brezzi, F., Franca, L.P., Hughes, T.J.R., Russo., A.: b = ∫ g. Comput. Methods Appl. Mech. Eng. 145(3–4), 329–339 (1997)

  7. Brezzi, F., Franca, L.P., Russo, A.: Further considerations on residual-free bubbles for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 166(1–2), 25–33 (1998)

    Google Scholar 

  8. Brezzi, F., Hughes, T.J.R., Marini, L.D., Russo, A., Süli, E.: A priori error analysis of residual-free bubbles for advection-diffusion problems. SIAM J. Numer. Anal. 36(6), 1933–1948 (electronic), (1999)

    Article  MATH  Google Scholar 

  9. Brezzi, F., Marini, D., Süli, E.: Residual-free bubbles for advection-diffusion problems: the general error analysis. Numer. Math. 85(1), 31–47 (2000)

    Article  MATH  Google Scholar 

  10. Brezzi, F., Russo, A.: Stabilization techniques for the finite element method. In: Applied and industrial mathematics, Venice–2, 1998, Kluwer Acad. Publ., Dordrecht, 2000, pp. 47–58

  11. Brezzi, F., Russo., A.: Choosing bubbles for advection-diffusion problems. Math. Models Methods Appl. Sci. 4(4), 571–587 (1994)

    MATH  Google Scholar 

  12. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982), FENOMECH ‘81, Part I (Stuttgart, 1981)

    Google Scholar 

  13. Canuto, C., Tabacco, A.: An anisotropic functional setting for convection-diffusion problems. East-West J. Numer. Math. 9(3), 199–231 (2001)

    MATH  Google Scholar 

  14. Dörfler, W.: Uniform a priori estimates for singularly perturbed elliptic equations in multidimensions. SIAM J. Numer. Anal. 36(6), 1878–1900 (electronic), (1999)

    Article  Google Scholar 

  15. Goering, H., Felgenhauer, A., Lube, G., Roos, H.-G., Tobiska, L.: Singularly perturbed differential equations, volume 13 of Reihe Math. Research. Akademie-Verlag, Berlin, 1983

  16. Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127(1–4), 387–401 (1995)

    Google Scholar 

  17. Hughes, T.J.R., Feijóo, G.R., Mazzei, L., Quincy, J.-B.: The variational multiscale method – a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1–2), 3–24 (1998)

    Google Scholar 

  18. Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73(2), 173–189 (1989)

    Google Scholar 

  19. Hughes, T.J.R., Mallet, M.: A new finite element formulation for computational fluid dynamics. III. The generalized streamline operator for multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 58(3), 305–328 (1986)

    Google Scholar 

  20. Lazarov, R.D., Tobiska, L., Vassilevski, P.S.: Streamline diffusion least-squares mixed finite element methods for convection-diffusion problems. East-West J. Numer. Math. 5(4), 249–264 (1997)

    MATH  Google Scholar 

  21. Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications. Vol. I. Springer-Verlag, New York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181

  22. Lions, J.-L., Peetre., J.: Sur une classe d’espaces d’interpolation. Inst. Hautes Études Sci. Publ. Math. 19, 5–68 (1964)

    MATH  Google Scholar 

  23. Roos, H.-G., Stynes, M., Tobiska, L.: Numerical methods for singularly perturbed differential equations. Springer-Verlag, Berlin, 1996. Convection-diffusion and flow problems

  24. Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. volume 3 of de Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, 1996

  25. Sangalli, G.: Quasi-optimality of the SUPG method for the one-dimensional advection-diffusion problem. SIAM J. Numer. Anal. 41(4), 1528–1542 (2003)

    Article  MATH  Google Scholar 

  26. Triebel, H.: Interpolation theory, function spaces, differential operators. Johann Ambrosius Barth, Heidelberg, second edition, 1995

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Sangalli.

Additional information

Mathematics Subject Classification (2000):65N30

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sangalli, G. Analysis of the advection-diffusion operator using fractional order norms. Numer. Math. 97, 779–796 (2004). https://doi.org/10.1007/s00211-003-0485-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-003-0485-6

Keywords

Navigation