Skip to main content
Log in

Comparative analysis of a cryptic thienamycin-like gene cluster identified in Streptomyces flavogriseus by genome mining

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In silico database searches allowed the identification in the S. flavogriseus ATCC 33331 genome of a carbapenem gene cluster highly related to the S. cattleya thienamycin one. This is the second cluster found for a complex highly substituted carbapenem. Comparative analysis revealed that both gene clusters display a high degree of synteny in gene organization and in protein conservation. Although the cluster appears to be silent under our laboratory conditions, the putative metabolic product was predicted from bioinformatics analyses using sequence comparison tools. These data, together with previous reports concerning epithienamycins production by S. flavogriseus strains, suggest that the cluster metabolic product might be a thienamycin-like carbapenem, possibly the epimeric epithienamycin. This finding might help in understanding the biosynthetic pathway to thienamycin and other highly substituted carbapenems. It also provides another example of genome mining in Streptomyces sequenced genomes as a powerful approach for novel antibiotic discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8:557–563

    Article  PubMed  CAS  Google Scholar 

  • Baltz RH (2010) Genomics and ancient origins of the daptomycin biosynthetic gene cluster. J Antibiot 63:506–511

    Article  PubMed  CAS  Google Scholar 

  • Barbe V, Bouzon M, Mangenot S, Badet B, Poulain J, Segurens B, Vallenet D, Marlière P, Weissenbach J (2011) Complete genome sequence of Streptomyces cattleya NRRL 8057, a producer of antibiotics and fluorometabolites. J Bacteriol 193:5055–5056

    Article  PubMed  CAS  Google Scholar 

  • Bibb JJ, Findlay PR, Johnson MW (1984) The relationship between base composition and codon usage in bacterial genes and its use in the simple and reliable identification of protein-coding sequences. Gene 30:157–166

    Article  PubMed  CAS  Google Scholar 

  • Bodner JJ, Phelan RM, Freeman MF, Li R, Townsend CA (2010) Non-heme iron oxygenases generate natural structural diversity in carbapenem antibiotics. J Am Chem Soc 132:12–13

    Article  PubMed  CAS  Google Scholar 

  • Cassidy PJ, Albers-Schonberg G, Goegelman RT, Miller T, Arison B, Stapley EO, Birnbaum J (1981) Epithienamycins. II. Isolation and structure assignment. J Antibiot 34:637–648

    Article  PubMed  CAS  Google Scholar 

  • Coulthurst SJ, Barnard AML, Salmond GPC (2005) Regulation and biosynthesis of carbapenem antibiotics in bacteria. Nat Rev Microbiol 3:295–306

    Article  PubMed  CAS  Google Scholar 

  • Cox ARJ, Thompson NR, Bycroft B, Stewart GSAB, Williams P, Salmond GPC (1998) A pheromone-independent CarR protein controls carbapenem antibiotic synthesis in the opportunistic human pathogen Serratia marcescens. Microbiology 144:201–209

    Article  PubMed  CAS  Google Scholar 

  • Demain AL (2009) Antibiotics: natural products essential to human health. Med Res Rev 29:821–842

    Article  PubMed  CAS  Google Scholar 

  • Derzelle S, Duchaud E, Kunst F, Danchin A, Bertin P (2002) Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Appl Environ Microbiol 68:3780–3789

    Article  PubMed  CAS  Google Scholar 

  • Freeman MF, Moshos KA, Bodner MJ, Li R, Townsed CA (2008) Four enzymes define the incorporation of coenzyme A in thienamycin biosynthesis. Proc Natl Acad Sci USA 105:11128–11133

    Article  PubMed  CAS  Google Scholar 

  • Hamed RB, Batchelar ET, Mecinovic J, Claridge TD, Shofield CJ (2009) Evidence that thienamycin biosynthesis proceeds via C-5 epimerization: ThnE catalyzes the formation of (2S, 5S)-trans-carboxymethylproline. ChemBioChem 10:246–250

    Article  PubMed  CAS  Google Scholar 

  • Kahan JS, Kahan FM, Goegelman R, Currie SA, Jackson M, Stapley EO, Miller TW, Miller AK, Hendlin D, Mochales S, Hernandez S, Woodruff HB, Birnbaum J (1979) Thienamycin, a new β-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J Antibiot 23:1255–1265

    Google Scholar 

  • McGowan SJ, Sebaihia M, Porter LE, Stewart GSAB, Williams P, Bycroft BW, Salmond GPC (1996) Analysis of bacterial carbapenem antibiotic production genes reveals a novel β-lactam biosynthesis pathway. Mol Microbiol 22:415–426

    Article  PubMed  CAS  Google Scholar 

  • Nicolau DP (2008) Carbapenems: a potent class of antibiotics. Expert Opin Investig Drugs 9:23–37 (review)

    Google Scholar 

  • Núñez LE, Méndez C, Braña AF, Blanco G, Salas JA (2003) The biosynthetic gene cluster for the beta-lactam carbapenem thienamycin in Streptomyces cattleya. Chem Biol 10:1–20

    Article  Google Scholar 

  • Rodloff AC, Goldstein EJC, Torres A (2006) Two decades of imipenem therapy. J Antimicrob Chemother 58:916–929

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez M, Núñez LE, Braña AF, Méndez C, Salas JA, Blanco G (2008) Identification of transcriptional activators for thienamycin and cephamycin C biosynthetic genes within the thienamycin gene cluster from Streptomyces cattleya. Mol Microbiol 69:633–645

    Article  PubMed  Google Scholar 

  • Rodríguez M, Méndez C, Salas JA, Blanco G (2010) Transcriptional organization of ThnI-regulated thienamycin biosynthetic genes in Streptomyces cattleya. J Antibiot 63:135–138

    Article  PubMed  Google Scholar 

  • Rodríguez M, Núñez LE, Braña AF, Méndez C, Salas JA, Blanco G (2011) Mutational analysis of the thienamycin biosynthetic gene cluster from Streptomyces cattleya. Antimicrob Agents Chemother 55:1638–1649

    Article  PubMed  Google Scholar 

  • Shibamoto N, Koki A, Nishino M, Nakamura K, Kiyoshima K, Okamura K, Okabe M, Okamoto R, Fukagawa Y, Shimuchi Y, Ishikura T (1980) PS-6 and PS-7, new beta-lactam antibiotics isolation, physicochemical properties and structures. J Antibiot 33:1128–1137

    Article  PubMed  CAS  Google Scholar 

  • Stapley EO, Cassidy PJ, Tunac J, Monaghan RL, Jackson M, Hernandez S, Zimmerman SB, Mata JM, Currie SA, Daoust D, Hedlin D (1981) Epithienamycins-novel beta-lactams retaled to thienamycin. I. Production and antibacterial acitivity. J Antibiot 34:628–636

    Article  PubMed  CAS  Google Scholar 

  • Walsh CT, Fischbach MA (2010) Natural products version 2.0: connecting genes to molecules. J Am Chem Soc 132:2469–2493

    Article  PubMed  CAS  Google Scholar 

  • Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. ChemBioChem 10:625–633

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank the US Department of Energy Joint Genome Institute and the French National Genomic Institute of the CEA/Genoscope for making available genome-sequencing data prior to publication. This study was supported by a grant from the University of Oviedo (UNOV-10-MA-4). I want to thank Alfredo F. Braña for the fruitful discussions and critical reading of the manuscript and Luis A. García for his continuous support. I am very grateful to José L. Caso and José A. Guijarro for their valuable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Blanco.

Additional information

Communicated by Jean-Luc Pernodet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanco, G. Comparative analysis of a cryptic thienamycin-like gene cluster identified in Streptomyces flavogriseus by genome mining. Arch Microbiol 194, 549–555 (2012). https://doi.org/10.1007/s00203-011-0781-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0781-y

Keywords

Navigation