Skip to main content

Advertisement

Log in

Relationship between bone quantitative ultrasound and mortality: a prospective study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

In a cohort of 5,201 women [72.3 ± 5.3 years] from 58 primary care centers in Spain, followed for three years, no relationship between heel QUS parameters and overall mortality was found. However, a significant relationship between a low speed of sound (SOS) and vascular mortality was observed.

Introduction

An inverse relationship between mortality and bone mineral density measured by dual-energy absorption densitometry or quantitative bone ultrasound (QUS) has been described. The aim of the present study was to test this relationship in the ECOSAP cohort, a 3-year prospective study designed to assess the ability of heel QUS and clinical risk factors to predict non-vertebral fracture risk in women over 64.

Methods

A cohort of 5,201 women [72.3 ± 5.3 years] was studied. QUS was assessed with the Sahara® bone sonometer. Women attended follow-up visits every 6 months. Physicians recorded if the patient died and cause of death. Hazard rates (HR) of all-cause and vascular mortality per one standard deviation reduction in QUS parameters were determined.

Results

One hundred (1.9%) women died during a median of 36.1 months follow-up, for a total of 14,999 patient-years, 42 because of vascular events (both cardiovascular and cerebrovascular). After adjusting for age, none of the QUS variables showed statistically significant differences between the patients who died and the survivors. In the final multivariate model, adjusted for age, current thyroxine and hypoglycaemic drug use, chronic obstructive pulmonary disease and decreased visual acuity, SOS was marginally non-significant: (HR: 1.19; 0.97–1.45). However, each 1 SD reduction in SOS was associated with a 39% increase in vascular mortality (HR: 1.39; 1.15–1.66).

Conclusions

In our cohort, SOS was related with vascular mortality, but not overall mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cooper C, Atkinson EJ, Jacobsen SJ, O'Fallon WM, Melton LJ 3rd (1993) Population-based study of survival after osteoporotic fractures. Am J Epidemiol 137:1001–1005

    PubMed  CAS  Google Scholar 

  2. Kado DM, Browner WS, Palermo L, Nevitt MC, Genant HK, Cummings SR, Osteoporotic Fractures Research Group (1999) Vertebral fractures and mortality in older women: a prospective study. Arch Inter Med 159:1215–1220

    Article  CAS  Google Scholar 

  3. Jalava T, Sarna S, Pylkkanen L, Mawer B, Kanis JA, Selby P, Davies M, Adams J, Francis RM, Robinson J, McCloskey E (2003) Association between vertebral fracture and increased mortality in osteoporotic patients. J Bone Miner Res 18:1254–1260

    Article  PubMed  Google Scholar 

  4. Johnell O, Kanis JA, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, De Laet C, Jonsson B (2004) Mortality after osteoporotic fractures. Osteoporos Int 15:38–42

    Article  PubMed  CAS  Google Scholar 

  5. Empana JP, Dargent-Molina P, Bracart G, EPIDOS Group (2004) Effect of hip fracture on mortality in elderly women: the EPIDOS prospective study. J Am Geriatr Soc 52:685–690

    Article  PubMed  Google Scholar 

  6. Hasserius R, Karlsson MK, Jonsson B et al (2005) Long-term morbidity and mortality after a clinically diagnosed vertebral fracture in the elderly: a 12- and 22-year follow-up of 257 patients. Calcif Tissue Int 76:235–242

    Article  PubMed  CAS  Google Scholar 

  7. Browner WS, Seeley DG, Vogt TM et al (1991) Non-trauma mortality in elderly women with low bone mineral density. Study of Osteoporotic Fractures Research Group. Lancet 338:355–358

    Article  PubMed  CAS  Google Scholar 

  8. Johansson C, Black D, Johnell O et al (1998) Bone mineral density is a predictor of survival. Calcif Tissue Int 63:190–196

    Article  PubMed  CAS  Google Scholar 

  9. Kado DM, Browner WS, Blackwell T et al (2000) Rate of bone loss is associated with mortality in older women: a prospective study. J Bone Miner Res 15:1974–1980

    Article  PubMed  CAS  Google Scholar 

  10. Trivedi DP, Khaw KT (2001) Bone mineral density at the hip predicts mortality in elderly men. Osteoporos Int 12:259–265

    Article  PubMed  CAS  Google Scholar 

  11. Marín F, González-Macías J, Díez-Pérez A et al (2006) Relationship between bone quantitative ultrasound and fractures: a meta-analysis. J Bone Miner Res 21:1126–1135

    Article  PubMed  Google Scholar 

  12. Turner CH, Peacock M, Timmerman L et al (1995) Calcaneal ultrasonic measurements discriminate hip fracture independently of bone mass. Osteoporos Int 5:130–135

    Article  PubMed  CAS  Google Scholar 

  13. Schott AM, Weill-Engerer S, Hans D et al (1995) Ultrasound discriminates patients with hip fracture equally well as dual energy X-ray absorptiometry and independently of bone mineral density. J Bone Miner Res 10:243–249

    Article  PubMed  CAS  Google Scholar 

  14. Bouxsein ML, Radloff SE (1997) Quantitative ultrasound of the calcaneus reflects the mechanical properties of calcaneal trabecular bone. J Bone Miner Res 12:839–846

    Article  PubMed  CAS  Google Scholar 

  15. Bauer DC, Palermo L, Black D et al (2002) Quantitative ultrasound and mortality: a prospective study. Osteoporos Int 13:606–612

    Article  PubMed  CAS  Google Scholar 

  16. Pinhero MM, Castro CM, Szejnfeld VL (2006) Low femoral bone mineral density and quantitative ultrasound are risk factors for new osteoporotic fracture and total and cardiovascular mortality: a 5-year population-based study of Brazilian elderly women. J Gerontol A Biol Sci Med Sci 61:196–203

    Google Scholar 

  17. Díez-Pérez A, González-Macías J, Marín F et al (2007) Prediction of absolute risk of non-spinal fractures using clinical risk factors and heel quantitative ultrasound. Osteoporos Int 18:629–639

    Article  PubMed  Google Scholar 

  18. Hernández JL, Marín F, González-Macías J et al (2004) Discriminative capacity of calcaneal quantitative ultrasound and fracture risk factors in postmenopausal women with osteoporotic fractures. Calcif Tissue Int 74:357–365

    Article  PubMed  CAS  Google Scholar 

  19. von Stetten E, Ouellet H, Wilson KE et al (1998) European caucasian female reference data values for the Sahara clinical bone sonometer. Bone 23(Suppl 5):S637 Abstract

    Google Scholar 

  20. Marín F, Vila J, González-Macías J, on behalf the ECOSAP project investigators (2003) Quantitative bone ultrasound: impact of the application of two different reference databases to a population of 5195 postmenopausal women. Med Clin (Barc) 121:250–252

    Article  Google Scholar 

  21. Sosa M, Saavedra P, Muñoz-Torres M et al (2002) Quantitative ultrasound calcaneous measurements: normative data and precision in the spanish population. Osteoporos Int 13:487–492

    Article  PubMed  CAS  Google Scholar 

  22. Lin J, Zhang D, Davidian M (2006) Smoothing Spline-based score tests for proportional hazards models. Biometrics 62:803–812

    Article  PubMed  Google Scholar 

  23. R Development Core Team (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org, accessed: 29 December, 2007

  24. von der Recke P, Hansen MA, Hassager C (1999) The association between low bone mass at the menopause and cardiovascular mortality. Am J Med 106:273–278

    Article  Google Scholar 

  25. Mussolino ME, Madans JH, Gillum RF (2003) Bone mineral density and mortality in women and men: the NHANES I epidemiologic follow-up study. Ann Epidemiol 13:692–697

    Article  PubMed  Google Scholar 

  26. van der Klift M, Pols HAP, Geleijnse JM et al (2002) Bone mineral density and mortality in elderly men and women: the Rotterdam study. Bone 30:643–648

    Article  Google Scholar 

  27. Browner WS, Pressman AR, Nevitt MC et al (1993) Association between low bone density and stroke in elderly women. The study of osteoporotic fractures. Stroke 24:940–946

    PubMed  CAS  Google Scholar 

  28. Uyama O, Yoshimoto Y, Yamamoto Y et al (1997) Bone changes and carotid atherosclerosis in postmenopausal women. Stroke 28:1730–1732

    PubMed  CAS  Google Scholar 

  29. Jorgensen L, Engstad T, Jacobsen BK (2001) Bone mineral density in acute stroke patients: low bone mineral density may predict first stroke in women. Stroke 32:47–51

    PubMed  CAS  Google Scholar 

  30. Tanko LB, Bagger YZ, Christiansen C (2003) Low bone mineral density in the hip as a marker of advanced atherosclerosis in elderly women. Calcif Tissue Int 73:15–20

    Article  PubMed  CAS  Google Scholar 

  31. Tanko LB, Christiansen C, Cox DA et al (2005) Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res 20:1912–1920

    Article  PubMed  Google Scholar 

  32. Johnell O, Kanis JA, Oden A et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194

    Article  PubMed  Google Scholar 

  33. Stewart A, Kumar V, Reid DM (2006) Long-term fracture prediction by DXA and QUS: a 10-year prospective study. J Bone Miner Res 21:413–418

    Article  PubMed  Google Scholar 

  34. World Health Organization. http://www.who.int/countries. Accessed: 18 January 2008

  35. Bauer DC, Rodondi N, Stone KL et al (2007) Thyroid hormone use, hyperthyroidism and mortality in older women. Am J Med 120:343–349

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mar Nieva, Mª Angeles Valero, Elena Arriaza, and Ana Carla Franch, Department of Medical Research, Eli Lilly and Company, Madrid (Spain), for the study monitoring, and Sergi Mojal, Institut Municipal d’Investigació Mèdica (IMIM), for statistics programming.

Funding

This study was supported by an unrestrictive research grant from the Medical Research Department, Eli Lilly and Company, Madrid. Spain.

Conflicts of interest

Dr. Fernando Marín is an employee of Eli Lilly, a company that investigates and commercializes bone active drugs. All other authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J. González-Macías.

Additional information

For a complete list of ECOSAP investigators, see Appendix.

Appendix

Appendix

*ECOSAP study investigators:

M.S. Arenas (C.S. La Florida. Alicante); J. Gálvez, E. Mira (C.S. Los Ángeles. Alicante); V. Borreguero, M.A. Cabrera, P. Aceña (C.S. El Pla Hospital. Alicante); R. Berenguer, A. Cebreiro, M. Puchades, J. Cantero (C.S. Algemesí-Alfafar. Valencia); R. González, M.L. Altarriba, A. García-Royo (C.S. Salvador Pau. Valencia); M.A. Fortea, M.A. López (C.S. Campanar. Valencia); A. Gimeno, Z. Pla (C.S. La Alcudia. Valencia); C. Alfonso, B. García-López (C.S. San Andrés. Murcia); J.E. Carrasco, J. Aliaga (C.S. Abarán. Murcia); S. Giménez (C.S. Ciudad Jardín. Málaga); J.A. Godinez (C.S. Antequera. Málaga); S. Alvarez (C.S. Las Albarizas. Marbella); F. Ruiz (C.S. Las Lagunas. Mijas Costa); R. Moya, M.A. Martín, M.M. Pérez, R. Vera (C.S. Cerro del Águila. Sevilla); T. Guerrero, H. Sánchez (C.S. Fuensanta. Sevilla); J. Calvo, J.A. Alameda (C.S. El Molino de la Vega. Huelva); B. Galán (C.S. Fuente Palmera. Córdoba); D. Martín (C.S. Torredelcampo. Jaén); J.A. Castro (C.S. Cartuja-Almanjayar. Granada); J.J. Rascón, P. Arqueros (C.S. Ciudad Jardín. Almería); J. Brunet, J. Comerma (ABS Sant Llatzer. Terrassa); C. Rubio, S. Cañadas, M. Berenguer (ABS Florida Nord. Hospitalet); L. Gayola (ABS Florida Sur. Hospitalet); R.M. Alcolea, T. Rama (ABS Llefiá. Badalona); J.J. Montero (ABS Ronda Prim. Mataró); E. Marco(ABS Sarriá de Ter. Girona); C. Carbonell, A. Cama, C. Olmos (ABS Vía Roma. Barcelona); R. Villafáfila, C. Bentue (ABS Viladecans II. Barcelona); G. Amorós, E. Barraquer (CAP Horta Lisboa. Barcelona); M.B. Brun (CAP Montcada i Reixac. Barcelona); M. Abizanda, A. Cervera (CAP Gran Vía. Barcelona); E. Santos, M. Turégano (C.S. Zona Centro. Cáceres); M. Espigares, J. Pozuelos (C.S. La Paz. Badajoz); G. Rodríguez, J.M. Comas (C.S. Puebla de Montalbán. Toledo); E. Magaña, J. Pérez (C.S. Estación “Paseo del Muelle”. Talavera de la Reina); F. Chavida, C. Cancelo (C.S. Brihuega. Guadalajara); F. Laporta (C.S. La Roda. Albacete); D. Zapatero, M. Sanz, A.C. García-Alvarez (C.S. Avda. de Daroca. Madrid); R. Julián, M.V. Castell (C.S. Peñagrande. Madrid); A. Morón (C.S. El Abajón. Madrid); J.C. Muñoz, S. Tojeiro (C.S. San Fernando. Madrid); M.L. Pascual, I. Nieto (C.S. Paseo de la Chopera. Madrid); J.A. Granados, F. Gómez (C.S. Guayaba. Madrid); O. Ortega, I. Jimeno (C.S. Isla de Oza. Madrid); C. Cámara (C.S. Coronel de Palma. Madrid); C. Onrubia, R. Martín (C.S. José Aguado. León); M. Borge, C. Gago (C.S. Arturo Eyres Sur. Valladolid); E. Blanco (C.S. Béjar. Salamanca); F. Suárez (C.S. Sur Paulino Prieto. Oviedo); P. Benavides (C.S. Pumarín. Oviedo); R. Villanueva, J.C. de la Fuente (C.S. García Alonso “Bombero Etxaniz”. Bilbao); E. Sampedro, V. Rubio (C.S. Hermanos Iturrino. Irún); M.C. Napal, J.A. Tabar (C.S. Barañain. Navarra); M.D. Martínez (C.S. Rochapea. Pamplona); T. Sagredo, F.E. Teruel (C.S. Txantrea. Pamplona); M. Flores (C.S. Espartero. Logroño); L.V. Hernández, F. Aganzo (C.S. La Almunia. Zaragoza); R. Córdoba, G. Guillén, E. de la Figuera (C.S. Delicias Sur. Zaragoza).

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Macías, J., Marín, F., Vila, J. et al. Relationship between bone quantitative ultrasound and mortality: a prospective study. Osteoporos Int 20, 257–264 (2009). https://doi.org/10.1007/s00198-008-0645-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-008-0645-8

Keywords

Navigation