Skip to main content
Log in

Clustering of longitudinal curves via a penalized method and EM algorithm

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this article, a new method is proposed for clustering longitudinal curves. In the proposed method, clusters of mean functions are identified through a weighted concave pairwise fusion method. The EM algorithm and the alternating direction method of multipliers algorithm are combined to estimate the group structure, mean functions and principal components simultaneously. The proposed method also allows to incorporate the prior neighborhood information to have more meaningful groups by adding pairwise weights in the pairwise penalties. In the simulation study, the performance of the proposed method is compared to some existing clustering methods in terms of the accuracy for estimating the number of subgroups and mean functions. The results suggest that ignoring the covariance structure will have a great effect on the performance of estimating the number of groups and estimating accuracy. The effect of including pairwise weights is also explored in a spatial lattice setting to take into consideration of the spatial information. The results show that incorporating spatial weights will improve the performance. A real example is used to illustrate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Basu S, Banerjee A, Mooney R.J (2004) Active semi-supervision for pairwise constrained clustering. In: Proceedings of the 2004 SIAM international conference on data mining. SIAM, pp. 333–344

  • Bouveyron C, Côme E, Jacques J (2015) The discriminative functional mixture model for a comparative analysis of bike sharing systems. Ann Appl Stat 9(4):1726–1760

    MathSciNet  Google Scholar 

  • Bouveyron C, Jacques J (2011) Model-based clustering of time series in group-specific functional subspaces. Adv Data Anal Classif 5(4):281–300

    MathSciNet  Google Scholar 

  • Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Google Scholar 

  • Chi EC, Lange K (2015) Splitting methods for convex clustering. J Comput Graph Stat 24(4):994–1013

    MathSciNet  Google Scholar 

  • Chiou JM, Li PL (2007) Functional clustering and identifying substructures of longitudinal data. J R Stat Soc Ser B (Stat Methodol) 69(4):679–699

    MathSciNet  Google Scholar 

  • Chiou JM, Li PL (2008) Correlation-based functional clustering via subspace projection. J Am Stat Assoc 103(484):1684–1692

    MathSciNet  Google Scholar 

  • Coffey N, Hinde J, Holian E (2014) Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data. Comput Stat Data Anal 71:14–29

    MathSciNet  Google Scholar 

  • Daawin P, Kim S, Miljkovic T (2019) Predictive modeling of obesity prevalence for the us population. N Am Actuar J 23(1):64–81

    MathSciNet  Google Scholar 

  • de Amorim RC (2012) Constrained clustering with minkowski weighted k-means. In: 2012 IEEE 13th international symposium on computational intelligence and informatics (CINTI). IEEE, pp. 13–17

  • De Boor C (2001) A practical guide to splines. Springer, New York, NY

    Google Scholar 

  • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96(456):1348–1360

    MathSciNet  Google Scholar 

  • Fang K, Chen Y, Ma S, Zhang Q (2022) Biclustering analysis of functionals via penalized fusion. J Multivar Anal 189:104874

    MathSciNet  Google Scholar 

  • Foulds J, Kumar S, Getoor L (2015) Latent topic networks: a versatile probabilistic programming framework for topic models. In International conference on machine learning. PMLR, pp. 777–786

  • Hales CM, Carroll MD, Fryar CD, Ogden CL (2017) Prevalence of obesity among adults and youth: United states, 2015–2016. NCHS data brief (288)

  • Huang H, Li Y, Guan Y (2014) Joint modeling and clustering paired generalized longitudinal trajectories with application to cocaine abuse treatment data. J Am Stat Assoc 109(508):1412–1424

    MathSciNet  Google Scholar 

  • Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218

    Google Scholar 

  • Ibrahim JG, Zhu H, Tang N (2008) Model selection criteria for missing-data problems using the EM algorithm. J Am Stat Assoc 103(484):1648–1658

    MathSciNet  Google Scholar 

  • Jacques J, Preda C (2013) Funclust: a curves clustering method using functional random variables density approximation. Neurocomputing 112:164–171

    Google Scholar 

  • Jacques J, Preda C (2014) Functional data clustering: a survey. Adv Data Anal Classif 8(3):231–255

    MathSciNet  Google Scholar 

  • Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recogn Lett 31(8):651–666

    Google Scholar 

  • James GM, Hastie TJ, Sugar CA (2000) Principal component models for sparse functional data. Biometrika 87(3):587–602

    MathSciNet  Google Scholar 

  • James GM, Sugar CA (2003) Clustering for sparsely sampled functional data. J Am Stat Assoc 98(462):397–408

    MathSciNet  Google Scholar 

  • Jiang H, Serban N (2012) Clustering random curves under spatial interdependence with application to service accessibility. Technometrics 54(2):108–119

    MathSciNet  Google Scholar 

  • Li T, Song X, Zhang Y, Zhu H, Zhu Z (2021) Clusterwise functional linear regression models. Comput Stat Data Anal 158:107192

    MathSciNet  Google Scholar 

  • Li Y, Hsing T (2010) Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data. Ann Stat 38(6):3321–3351

    MathSciNet  Google Scholar 

  • Li Y, Wang N, Carroll RJ (2013) Selecting the number of principal components in functional data. J Am Stat Assoc 108(504):1284–1294

    MathSciNet  Google Scholar 

  • Luan Y, Li H (2003) Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics 19(4):474–482

    Google Scholar 

  • Lv Y, Zhu X, Zhu Z, Qu A (2020) Nonparametric cluster analysis on multiple outcomes of longitudinal data. Stat Sin 30(4):1829–1856

    MathSciNet  Google Scholar 

  • Ma H, Liu C, Xu S, Yang J (2023) Subgroup analysis for functional partial linear regression model. Can J Stat 51(2):559–579

    MathSciNet  Google Scholar 

  • Ma S, Huang J (2017) A concave pairwise fusion approach to subgroup analysis. J Am Stat Assoc 112(517):410–423

    MathSciNet  Google Scholar 

  • Ma S, Huang J, Zhang Z, Liu M (2020) Exploration of heterogeneous treatment effects via concave fusion. Int J Biostat 16(1):20180026. https://www.degruyter.com/document/doi/10.1515/ijb-2018-0026/html

  • Miljkovic T, Wang X (2021) Identifying subgroups of age and cohort effects in obesity prevalence. Biom J 63(1):168–186

    MathSciNet  Google Scholar 

  • Ng SK, McLachlan GJ, Wang K, Ben-Tovim Jones L, Ng SW (2006) A mixture model with random-effects components for clustering correlated gene-expression profiles. Bioinformatics 22(14):1745–1752

    Google Scholar 

  • Peng J, Müller HG (2008) Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions. Ann Appl Stat 2(3):1056–1077

    MathSciNet  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis. Springer, New York

    Google Scholar 

  • Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850

    Google Scholar 

  • Redd A (2012) A comment on the orthogonalization of B-spline basis functions and their derivatives. Stat Comput 22(1):251–257

    MathSciNet  Google Scholar 

  • Ren M, Zhang S, Zhang Q, Ma S (2022) Gaussian graphical model-based heterogeneity analysis via penalized fusion. Biometrics 78(2):524–535

    MathSciNet  Google Scholar 

  • Sangalli LM, Secchi P, Vantini S, Vitelli V (2010) K-mean alignment for curve clustering. Comput Stat Data Anal 54(5):1219–1233

    MathSciNet  Google Scholar 

  • Sugar CA, James GM (2003) Finding the number of clusters in a dataset: an information-theoretic approach. J Am Stat Assoc 98(463):750–763

    MathSciNet  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58(1):267–288

    MathSciNet  Google Scholar 

  • Vinh NX, Epps J, Bailey J (2010) Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J Mach Learn Res 11:2837–2854

    MathSciNet  Google Scholar 

  • Wang H, Li R, Tsai CL (2007) Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94(3):553–568

    MathSciNet  Google Scholar 

  • Wang X, Zhu Z, Zhang HH (2023) Spatial heterogeneity automatic detection and estimation. Comput Stat Data Anal 180:107667

    MathSciNet  Google Scholar 

  • Xiao P, Wang G (2022) Partial functional linear regression with autoregressive errors. Commun Stat Theory Methods 51(13):4515–4536

    MathSciNet  Google Scholar 

  • Yao F, Müller HG, Wang JL (2005) Functional data analysis for sparse longitudinal data. J Am Stat Assoc 100(470):577–590

    MathSciNet  Google Scholar 

  • Zhang CH (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Stat 38(2):894–942

    MathSciNet  Google Scholar 

  • Zhang X, Zhang Q, Ma S, Fang K (2022) Subgroup analysis for high-dimensional functional regression. J Multivar Anal 192:105100

    MathSciNet  Google Scholar 

  • Zhou L, Huang JZ, Carroll RJ (2008) Joint modelling of paired sparse functional data using principal components. Biometrika 95(3):601–619

    MathSciNet  Google Scholar 

  • Zhou L, Sun S, Fu H, Song PXK (2022) Subgroup-effects models for the analysis of personal treatment effects. Ann Appl Stat 16(1):80–103

    MathSciNet  Google Scholar 

  • Zhu X, Qu A (2018) Cluster analysis of longitudinal profiles with subgroups. Electron J Stat 12(1):171–193

    MathSciNet  Google Scholar 

  • Zhu X, Tang X, Qu A (2021) Longitudinal clustering for heterogeneous binary data. Stat Sin 31(2):603–624

    MathSciNet  Google Scholar 

  • Zhu Y, Di C, Chen YQ (2019) Clustering functional data with application to electronic medication adherence monitoring in HIV prevention trials. Stat Biosci 11(2):238–261

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang.

Ethics declarations

Conflict of interest

No financial or non-financial interests are directly or indirectly related to the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, the EM algorithm with a known group structure is presented. The EM procedure is similar to the EM algorithm in James et al. (2000), the main difference is that a new design matrix is constructed based on the given group information.

If the group structure is known, suppose there are \(\tilde{K}\) groups and define \(\tilde{\varvec{W}}\) be an \(n\times \tilde{K}\) matrix with element \(w_{ij}\) and \(w_{ij}=1\) if i is in the kth group. Also define \(\varvec{W}=\tilde{\varvec{W}}\otimes \varvec{I}_{q}\) and \(\varvec{U}=\varvec{B}_{0}\varvec{W}\). \(\left( \tilde{\varvec{\alpha }}_{1}^{T},\dots ,\tilde{\varvec{\alpha }}_{\tilde{K}}^{T}\right) ^{T}=\tilde{\varvec{\alpha }}=\left( \varvec{U}^{T}\varvec{U}\right) ^{-1}\varvec{U}^{T}\varvec{Y}\) is the estimate of coefficients for \(\tilde{K}\) groups \(\varvec{\alpha } = (\varvec{\alpha }_1^T,\dots , \varvec{\alpha }_{\tilde{K}}^T)^T\), which is set as the initial estimate of \(\varvec{\alpha }\). Thus, \(\tilde{\varvec{\beta }}_{i}=\tilde{\varvec{\alpha }}_{k}\) if i is in the kth group. Define

$$\begin{aligned} \varvec{C}_{n}=\frac{1}{n}\sum _{i=1}^{n}\left( \varvec{\beta }_{i}^{*}-\tilde{\varvec{\beta }}_{i}\right) ^{T}\left( \varvec{\beta }_{i}^{*}-\tilde{\varvec{\beta }}_{i}\right) , \end{aligned}$$

where \(\varvec{\beta }_i^*\) is obtained using the same procedure in Remark 2. Then, the eigendecomposition is done for \(\varvec{C}_{n}=\varvec{\Theta }_{0}\varvec{\Lambda }_{0}\varvec{\Theta }_{0}^{T}\), where \(\varvec{\Theta }_0\) and \(\varvec{\Lambda }_0\) are the initial values of \(\varvec{\Theta }\) and \(\varvec{\Lambda }\), respectively.

Similar to the proposed algorithm, the conditional distribution of \(\varvec{\xi }_i\) is needed, which has the following forms

$$\begin{aligned} \varvec{\xi }_{i}\vert \varvec{\Omega }\sim N\left( \varvec{m}_{i},\varvec{V}_{i}\right) , \end{aligned}$$

where \(\varvec{m}_{i} = \; { E\left[ \varvec{\xi }_{i}\vert \varvec{\alpha }, \varvec{\Theta }, \varvec{\lambda }, \sigma ^2 \right] }\) and \(\varvec{V}_{i} = \; { V\left[ \varvec{\xi }_{i}\vert \varvec{\alpha }, \varvec{\Theta }, \varvec{\lambda }, \sigma ^2 \right] }\) with the following form.

$$\begin{aligned} \varvec{m}_{i} = &{ E\left[ \varvec{\xi }_{i}\vert \varvec{\alpha }, \varvec{\Theta }, \varvec{\lambda }, \sigma ^2 \right] }=\left( \varvec{\Theta }^{T}\varvec{B}_{i}^{T}\varvec{B}_{i}\varvec{\Theta }+\sigma ^{2}\varvec{\Lambda }^{-1}\right) ^{-1}\varvec{\Theta }^{T}\varvec{B}_{i}^{T}\left( \varvec{Y}_{i}-\varvec{U}_{i}\varvec{\alpha }\right) ,\\ \varvec{V}_{i} = &{ V\left[ \varvec{\xi }_{i}\vert \varvec{\alpha }, \varvec{\Theta }, \varvec{\lambda }, \sigma ^2 \right] }=\left( \frac{1}{\sigma ^{2}}\varvec{\Theta }^{T}\varvec{B}_{i}^{T}\varvec{B}_{i}\varvec{\Theta }+\varvec{\Lambda }^{-1}\right) ^{-1}. \end{aligned}$$

The only difference between the conditional distribution here and the proposed algorithm is that \(\varvec{\alpha }\) is used instead of \(\varvec{\beta }\), since the group structure information is given.

Similarly, \(\sigma ^2\) is updated by

$$\begin{aligned} \sigma ^{2}&=\frac{1}{\sum _{i=1}^{n}n_{i}}\sum _{i=1}^{n}\left( \varvec{Y}_{i}-\varvec{U}_{i}\varvec{\alpha }-\varvec{B}_{i}\varvec{\Theta }\hat{\varvec{m}}_{i}\right) ^{T}\left( \varvec{Y}_{i}-\varvec{U}_{i}\varvec{\alpha }-\varvec{B}_{i}\varvec{\Theta }\hat{\varvec{m}}_{i}\right) \nonumber \\& \quad +\frac{1}{\sum _{i=1}^{n}n_{i}}\sum _{i=1}^{n}tr\left( \varvec{B}_{i}\varvec{\Theta }\hat{\varvec{V}}_{i}\varvec{\Theta }^{T}\varvec{B}_{i}^{T}\right) . \end{aligned}$$
(25)

Also, the same procedure is used to updated \(\varvec{\Theta }\) and \(\varvec{\lambda }\) with

$$\begin{aligned} \tilde{\varvec{\theta }}_{j}&=\left( \sum _{i=1}^{n}\varvec{B}_{i}^{T}\varvec{B}_{i}\left( \hat{m}_{ij}^{2}+\hat{\varvec{V}_{i}}\left( j,j\right) \right) \right) ^{-1}\\& \quad \cdot \sum _{i=1}^{n}\varvec{B}_{i}^{T}\left[ \left( \varvec{Y}_{i}-\varvec{U}_{i}\varvec{\alpha }\right) \hat{m}_{ij}-\sum _{l\ne j}\varvec{B}_{i}\varvec{\theta }_{l}\left( \hat{m}_{il}\hat{m}_{ij}+\hat{\varvec{V}}_{i}\left( l,j\right) \right) \right] . \end{aligned}$$

Last, \(\varvec{\alpha }\) is updated as

$$\begin{aligned} \tilde{\varvec{\alpha }}=\left( \varvec{U}^{T}\varvec{U}\right) ^{-1}\varvec{U}^{T}\left( \varvec{Y}-\varvec{B}_{0}(\varvec{I}_{n}\otimes \varvec{\Theta })\hat{\varvec{m}}\right) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X. Clustering of longitudinal curves via a penalized method and EM algorithm. Comput Stat 39, 1485–1512 (2024). https://doi.org/10.1007/s00180-023-01380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-023-01380-2

Keywords

Navigation